solve ODE using finite difference method
15 次查看(过去 30 天)
显示 更早的评论
回答(2 个)
SAI SRUJAN
2024-8-13
Hi Emon,
I understand that you are trying to solve a pde using finite difference method.
Refer to the following code sample to proceed further,
Nx = 50; % Number of spatial points
Nt = 1000; % Number of time steps
% Discretization
dx = 1 / (Nx - 1);
dt = 0.1 / Nt;
x = linspace(0, 1, Nx);
t = linspace(0, 0.1, Nt);
% Stability condition
if dt > dx^2 / (2)
error('Time step is too large for stability.');
end
% Initial condition
u = sin(pi * x);
% Time-stepping loop
for n = 1:Nt
u_new = u;
for i = 2:Nx-1
% Finite difference approximation
u_new(i) = u(i) +dt / dx^2 * (u(i+1) - 2*u(i) - u(i-1));
end
u = u_new;
end
plot(x, u);
xlabel('x');
ylabel('u');
title('Solution of the PDE \partial u/\partial t = \partial^2 u/\partial x^2');
I hope this helps!
0 个评论
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Ordinary Differential Equations 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!