how to get numeric value from expression?
2 次查看(过去 30 天)
显示 更早的评论
I try to Want numeric value more simple less then 1
Q =
((9*exp(-(94143178827*479001600^(1/2))/1203125000000000000000000000000))/50 + (9*exp(-(3486784401*3628800^(1/2))/10937500000000000000000000))/50 + (9*exp(-(1594323*120^(1/2))/31250000000000))/50 + (9*exp(-(7625597484987*87178291200^(1/2))/547421875000000000000000000000000000))/50 + (9*exp(-(6561*2^(1/2))/12500000))/50 + (9*exp(-(177147*24^(1/2))/125000000000))/50 + (9*exp(-(19683*6^(1/2))/625000000))/50 + (9*exp(-81/2500))/50 + (9*exp(-729/125000))/50 + (9*exp(-(387420489*362880^(1/2))/21875000000000000000000))/50 + (9*exp(-(43046721*5040^(1/2))/1093750000000000000))/50 + (9*exp(-(847288609443*6227020800^(1/2))/782031250000000000000000000000000))/50 + (9*exp(-(387420489*40320^(1/2))/437500000000000000000))/50 + (9*exp(-(31381059609*39916800^(1/2))/6015625000000000000000000000))/50 + (9*exp(-(4782969*720^(1/2))/3125000000000000))/50)^2 + ((91*exp(-(94143178827*479001600^(1/2))/1203125000000000000000000000000))/50 + (91*exp(-(3486784401*3628800^(1/2))/10937500000000000000000000))/50 + (91*exp(-(1594323*120^(1/2))/31250000000000))/50 + (91*exp(-(7625597484987*87178291200^(1/2))/547421875000000000000000000000000000))/50 + (91*exp(-(6561*2^(1/2))/12500000))/50 + (91*exp(-(177147*24^(1/2))/125000000000))/50 + (91*exp(-(19683*6^(1/2))/625000000))/50 + (91*exp(-81/2500))/50 + (91*exp(-729/125000))/50 + (91*exp(-(387420489*362880^(1/2))/21875000000000000000000))/50 + (91*exp(-(43046721*5040^(1/2))/1093750000000000000))/50 + (91*exp(-(847288609443*6227020800^(1/2))/782031250000000000000000000000000))/50 + (91*exp(-(387420489*40320^(1/2))/437500000000000000000))/50 + (91*exp(-(31381059609*39916800^(1/2))/6015625000000000000000000000))/50 + (91*exp(-(4782969*720^(1/2))/3125000000000000))/50)^2 + ((141*exp(-(94143178827*479001600^(1/2))/1203125000000000000000000000000))/50 + (141*exp(-(3486784401*3628800^(1/2))/10937500000000000000000000))/50 + (141*exp(-(1594323*120^(1/2))/31250000000000))/50 + (141*exp(-(7625597484987*87178291200^(1/2))/547421875000000000000000000000000000))/50 + (141*exp(-(6561*2^(1/2))/12500000))/50 + (141*exp(-(177147*24^(1/2))/125000000000))/50 + (141*exp(-(19683*6^(1/2))/625000000))/50 + (141*exp(-81/2500))/50 + (141*exp(-729/125000))/50 + (141*exp(-(387420489*362880^(1/2))/21875000000000000000000))/50 + (141*exp(-(43046721*5040^(1/2))/1093750000000000000))/50 + (141*exp(-(847288609443*6227020800^(1/2))/782031250000000000000000000000000))/50 + (141*exp(-(387420489*40320^(1/2))/437500000000000000000))/50 + (141*exp(-(31381059609*39916800^(1/2))/6015625000000000000000000000))/50 + (141*exp(-(4782969*720^(1/2))/3125000000000000))/50)^2 + ((9*exp(-(94143178827*479001600^(1/2))/1203125000000000000000000000000))/50 + (9*exp(-(3486784401*3628800^(1/2))/10937500000000000000000000))/50 + (9*exp(-(1594323*120^(1/2))/31250000000000))/50 + (9*exp(-(7625597484987*87178291200^(1/2))/547421875000000000000000000000000000))/50 + (9*exp(-(6561*2^(1/2))/12500000))/50 + (9*exp(-(177147*24^(1/2))/125000000000))/50 + (9*exp(-(19683*6^(1/2))/625000000))/50 + (9*exp(-81/2500))/50 + (9*exp(-729/125000))/50 + (9*exp(-(387420489*362880^(1/2))/21875000000000000000000))/50 + (9*exp(-(43046721*5040^(1/2))/1093750000000000000))/50 + (9*exp(-(847288609443*6227020800^(1/2))/782031250000000000000000000000000))/50 + (9*exp(-(387420489*40320^(1/2))/437500000000000000000))/50 + (9*exp(-(31381059609*39916800^(1/2))/6015625000000000000000000000))/50 + (9*exp(-(4782969*720^(1/2))/3125000000000000))/50 - 2^(1/2)*(exp(-(94143178827*479001600^(1/2))/1203125000000000000000000000000) + exp(-(3486784401*3628800^(1/2))/10937500000000000000000000) + exp(-(1594323*120^(1/2))/31250000000000) + exp(-(7625597484987*87178291200^(1/2))/547421875000000000000000000000000000) + exp(-(6561*2^(1/2))/12500000) + exp(-(177147*24^(1/2))/125000000000) + exp(-(19683*6^(1/2))/625000000) + exp(-81/2500) + exp(-729/125000) + exp(-(387420489*362880^(1/2))/21875000000000000000000) + exp(-(43046721*5040^(1/2))/1093750000000000000) + exp(-(847288609443*6227020800^(1/2))/782031250000000000000000000000000) + exp(-(387420489*40320^(1/2))/437500000000000000000) + exp(-(31381059609*39916800^(1/2))/6015625000000000000000000000) + exp(-(4782969*720^(1/2))/3125000000000000)))^2 + ((9*exp(-(94143178827*479001600^(1/2))/1203125000000000000000000000000))/50 + (9*exp(-(3486784401*3628800^(1/2))/10937500000000000000000000))/50 + (9*exp(-(1594323*120^(1/2))/31250000000000))/50 + (9*exp(-(7625597484987*87178291200^(1/2))/547421875000000000000000000000000000))/50 + (9*exp(-(6561*2^(1/2))/12500000))/50 + (9*exp(-(177147*24^(1/2))/125000000000))/50 + (9*exp(-(19683*6^(1/2))/625000000))/50 + (9*exp(-81/2500))/50 + (9*exp(-729/125000))/50 + (9*exp(-(387420489*362880^(1/2))/21875000000000000000000))/50 + (9*exp(-(43046721*5040^(1/2))/1093750000000000000))/50 + (9*exp(-(847288609443*6227020800^(1/2))/782031250000000000000000000000000))/50 + (9*exp(-(387420489*40320^(1/2))/437500000000000000000))/50 + (9*exp(-(31381059609*39916800^(1/2))/6015625000000000000000000000))/50 + (9*exp(-(4782969*720^(1/2))/3125000000000000))/50 - 2*2^(1/2)*(exp(-(94143178827*479001600^(1/2))/1203125000000000000000000000000) + exp(-(3486784401*3628800^(1/2))/10937500000000000000000000) + exp(-(1594323*120^(1/2))/31250000000000) + exp(-(7625597484987*87178291200^(1/2))/547421875000000000000000000000000000) + exp(-(6561*2^(1/2))/12500000) + exp(-(177147*24^(1/2))/125000000000) + exp(-(19683*6^(1/2))/625000000) + exp(-81/2500) + exp(-729/125000) + exp(-(387420489*362880^(1/2))/21875000000000000000000) + exp(-(43046721*5040^(1/2))/1093750000000000000) + exp(-(847288609443*6227020800^(1/2))/782031250000000000000000000000000) + exp(-(387420489*40320^(1/2))/437500000000000000000) + exp(-(31381059609*39916800^(1/2))/6015625000000000000000000000) + exp(-(4782969*720^(1/2))/3125000000000000)))^2 + ((9*exp(-(94143178827*479001600^(1/2))/1203125000000000000000000000000))/50 + (9*exp(-(3486784401*3628800^(1/2))/10937500000000000000000000))/50 + (9*exp(-(1594323*120^(1/2))/31250000000000))/50 + (9*exp(-(7625597484987*87178291200^(1/2))/547421875000000000000000000000000000))/50 + (9*exp(-(6561*2^(1/2))/12500000))/50 + (9*exp(-(177147*24^(1/2))/125000000000))/50 + (9*exp(-(19683*6^(1/2))/625000000))/50 + (9*exp(-81/2500))/50 + (9*exp(-729/125000))/50 + (9*exp(-(387420489*362880^(1/2))/21875000000000000000000))/50 + (9*exp(-(43046721*5040^(1/2))/1093750000000000000))/50 + (9*exp(-(847288609443*6227020800^(1/2))/782031250000000000000000000000000))/50 + (9*exp(-(387420489*40320^(1/2))/437500000000000000000))/50 + (9*exp(-(31381059609*39916800^(1/2))/6015625000000000000000000000))/50 + (9*exp(-(4782969*720^(1/2))/3125000000000000))/50 - 3^(1/2)*(exp(-(94143178827*479001600^(1/2))/1203125000000000000000000000000) + exp(-(3486784401*3628800^(1/2))/10937500000000000000000000) + exp(-(1594323*120^(1/2))/31250000000000) + exp(-(7625597484987*87178291200^(1/2))/547421875000000000000000000000000000) + exp(-(6561*2^(1/2))/12500000) + exp(-(177147*24^(1/2))/125000000000) + exp(-(19683*6^(1/2))/625000000) + exp(-81/2500) + exp(-729/125000) + exp(-(387420489*362880^(1/2))/21875000000000000000000) + exp(-(43046721*5040^(1/2))/1093750000000000000) + exp(-(847288609443*6227020800^(1/2))/782031250000000000000000000000000) + exp(-(387420489*40320^(1/2))/437500000000000000000) + exp(-(31381059609*39916800^(1/2))/6015625000000000000000000000) + exp(-(4782969*720^(1/2))/3125000000000000)))^2 + ((9*exp(-(94143178827*479001600^(1/2))/1203125000000000000000000000000))/50 + (9*exp(-(3486784401*3628800^(1/2))/10937500000000000000000000))/50 + (9*exp(-(1594323*120^(1/2))/31250000000000))/50 + (9*exp(-(7625597484987*87178291200^(1/2))/547421875000000000000000000000000000))/50 + (9*exp(-(6561*2^(1/2))/12500000))/50 + (9*exp(-(177147*24^(1/2))/125000000000))/50 + (9*exp(-(19683*6^(1/2))/625000000))/50 + (9*exp(-81/2500))/50 + (9*exp(-729/125000))/50 + (9*exp(-(387420489*362880^(1/2))/21875000000000000000000))/50 + (9*exp(-(43046721*5040^(1/2))/1093750000000000000))/50 + (9*exp(-(847288609443*6227020800^(1/2))/782031250000000000000000000000000))/50 + (9*exp(-(387420489*40320^(1/2))/437500000000000000000))/50 + (9*exp(-(31381059609*39916800^(1/2))/6015625000000000000000000000))/50 + (9*exp(-(4782969*720^(1/2))/3125000000000000))/50 - 2*3^(1/2)*(exp(-(94143178827*479001600^(1/2))/1203125000000000000000000000000) + exp(-(3486784401*3628800^(1/2))/10937500000000000000000000) + exp(-(1594323*120^(1/2))/31250000000000) + exp(-(7625597484987*87178291200^(1/2))/547421875000000000000000000000000000) + exp(-(6561*2^(1/2))/12500000) + exp(-(177147*24^(1/2))/125000000000) + exp(-(19683*6^(1/2))/625000000) + exp(-81/2500) + exp(-729/125000) + exp(-(387420489*362880^(1/2))/21875000000000000000000) + exp(-(43046721*5040^(1/2))/1093750000000000000) + exp(-(847288609443*6227020800^(1/2))/782031250000000000000000000000000) + exp(-(387420489*40320^(1/2))/437500000000000000000) + exp(-(31381059609*39916800^(1/2))/6015625000000000000000000000) + exp(-(4782969*720^(1/2))/3125000000000000)))^2 + ((9*exp(-(94143178827*479001600^(1/2))/1203125000000000000000000000000))/50 + (9*exp(-(3486784401*3628800^(1/2))/10937500000000000000000000))/50 + (9*exp(-(1594323*120^(1/2))/31250000000000))/50 + (9*exp(-(7625597484987*87178291200^(1/2))/547421875000000000000000000000000000))/50 + (9*exp(-(6561*2^(1/2))/12500000))/50 + (9*exp(-(177147*24^(1/2))/125000000000))/50 + (9*exp(-(19683*6^(1/2))/625000000))/50 + (9*exp(-81/2500))/50 + (9*exp(-729/125000))/50 + (9*exp(-(387420489*362880^(1/2))/21875000000000000000000))/50 + (9*exp(-(43046721*5040^(1/2))/1093750000000000000))/50 + (9*exp(-(847288609443*6227020800^(1/2))/782031250000000000000000000000000))/50 + (9*exp(-(387420489*40320^(1/2))/437500000000000000000))/50 + (9*exp(-(31381059609*39916800^(1/2))/6015625000000000000000000000))/50 + (9*exp(-(4782969*720^(1/2))/3125000000000000))/50 - 5^(1/2)*(exp(-(94143178827*479001600^(1/2))/1203125000000000000000000000000) + exp(-(3486784401*3628800^(1/2))/10937500000000000000000000) + exp(-(1594323*120^(1/2))/31250000000000) + exp(-(7625597484987*87178291200^(1/2))/547421875000000000000000000000000000) + exp(-(6561*2^(1/2))/12500000) + exp(-(177147*24^(1/2))/125000000000) + exp(-(19683*6^(1/2))/625000000) + exp(-81/2500) + exp(-729/125000) + exp(-(387420489*362880^(1/2))/21875000000000000000000) + exp(-(43046721*5040^(1/2))/1093750000000000000) + exp(-(847288609443*6227020800^(1/2))/782031250000000000000000000000000) + exp(-(387420489*40320^(1/2))/437500000000000000000) + exp(-(31381059609*39916800^(1/2))/6015625000000000000000000000) + exp(-(4782969*720^(1/2))/3125000000000000)))^2 + ((9*exp(-(94143178827*479001600^(1/2))/1203125000000000000000000000000))/50 + (9*exp(-(3486784401*3628800^(1/2))/10937500000000000000000000))/50 + (9*exp(-(1594323*120^(1/2))/31250000000000))/50 + (9*exp(-(7625597484987*87178291200^(1/2))/547421875000000000000000000000000000))/50 + (9*exp(-(6561*2^(1/2))/12500000))/50 + (9*exp(-(177147*24^(1/2))/125000000000))/50 + (9*exp(-(19683*6^(1/2))/625000000))/50 + (9*exp(-81/2500))/50 + (9*exp(-729/125000))/50 + (9*exp(-(387420489*362880^(1/2))/21875000000000000000000))/50 + (9*exp(-(43046721*5040^(1/2))/1093750000000000000))/50 + (9*exp(-(847288609443*6227020800^(1/2))/782031250000000000000000000000000))/50 + (9*exp(-(387420489*40320^(1/2))/437500000000000000000))/50 + (9*exp(-(31381059609*39916800^(1/2))/6015625000000000000000000000))/50 + (9*exp(-(4782969*720^(1/2))/3125000000000000))/50 - 6^(1/2)*(exp(-(94143178827*479001600^(1/2))/1203125000000000000000000000000) + exp(-(3486784401*3628800^(1/2))/10937500000000000000000000) + exp(-(1594323*120^(1/2))/31250000000000) + exp(-(7625597484987*87178291200^(1/2))/547421875000000000000000000000000000) + exp(-(6561*2^(1/2))/12500000) + exp(-(177147*24^(1/2))/125000000000) + exp(-(19683*6^(1/2))/625000000) + exp(-81/2500) + exp(-729/125000) + exp(-(387420489*362880^(1/2))/21875000000000000000000) + exp(-(43046721*5040^(1/2))/1093750000000000000) + exp(-(847288609443*6227020800^(1/2))/782031250000000000000000000000000) + exp(-(387420489*40320^(1/2))/437500000000000000000) + exp(-(31381059609*39916800^(1/2))/6015625000000000000000000000) + exp(-(4782969*720^(1/2))/3125000000000000)))^2 + ((9*exp(-(94143178827*479001600^(1/2))/1203125000000000000000000000000))/50 + (9*exp(-(3486784401*3628800^(1/2))/10937500000000000000000000))/50 + (9*exp(-(1594323*120^(1/2))/31250000000000))/50 + (9*exp(-(7625597484987*87178291200^(1/2))/547421875000000000000000000000000000))/50 + (9*exp(-(6561*2^(1/2))/12500000))/50 + (9*exp(-(177147*24^(1/2))/125000000000))/50 + (9*exp(-(19683*6^(1/2))/625000000))/50 + (9*exp(-81/2500))/50 + (9*exp(-729/125000))/50 + (9*exp(-(387420489*362880^(1/2))/21875000000000000000000))/50 + (9*exp(-(43046721*5040^(1/2))/1093750000000000000))/50 + (9*exp(-(847288609443*6227020800^(1/2))/782031250000000000000000000000000))/50 + (9*exp(-(387420489*40320^(1/2))/437500000000000000000))/50 + (9*exp(-(31381059609*39916800^(1/2))/6015625000000000000000000000))/50 + (9*exp(-(4782969*720^(1/2))/3125000000000000))/50 - 7^(1/2)*(exp(-(94143178827*479001600^(1/2))/1203125000000000000000000000000) + exp(-(3486784401*3628800^(1/2))/10937500000000000000000000) + exp(-(1594323*120^(1/2))/31250000000000) + exp(-(7625597484987*87178291200^(1/2))/547421875000000000000000000000000000) + exp(-(6561*2^(1/2))/12500000) + exp(-(177147*24^(1/2))/125000000000) + exp(-(19683*6^(1/2))/625000000) + exp(-81/2500) + exp(-729/125000) + exp(-(387420489*362880^(1/2))/21875000000000000000000) + exp(-(43046721*5040^(1/2))/1093750000000000000) + exp(-(847288609443*6227020800^(1/2))/782031250000000000000000000000000) + exp(-(387420489*40320^(1/2))/437500000000000000000) + exp(-(31381059609*39916800^(1/2))/6015625000000000000000000000) + exp(-(4782969*720^(1/2))/3125000000000000)))^2 + ((9*exp(-(94143178827*479001600^(1/2))/1203125000000000000000000000000))/50 + (9*exp(-(3486784401*3628800^(1/2))/10937500000000000000000000))/50 + (9*exp(-(1594323*120^(1/2))/31250000000000))/50 + (9*exp(-(7625597484987*87178291200^(1/2))/547421875000000000000000000000000000))/50 + (9*exp(-(6561*2^(1/2))/12500000))/50 + (9*exp(-(177147*24^(1/2))/125000000000))/50 + (9*exp(-(19683*6^(1/2))/625000000))/50 + (9*exp(-81/2500))/50 + (9*exp(-729/125000))/50 + (9*exp(-(387420489*362880^(1/2))/21875000000000000000000))/50 + (9*exp(-(43046721*5040^(1/2))/1093750000000000000))/50 + (9*exp(-(847288609443*6227020800^(1/2))/782031250000000000000000000000000))/50 + (9*exp(-(387420489*40320^(1/2))/437500000000000000000))/50 + (9*exp(-(31381059609*39916800^(1/2))/6015625000000000000000000000))/50 + (9*exp(-(4782969*720^(1/2))/3125000000000000))/50 - 10^(1/2)*(exp(-(94143178827*479001600^(1/2))/1203125000000000000000000000000) + exp(-(3486784401*3628800^(1/2))/10937500000000000000000000) + exp(-(1594323*120^(1/2))/31250000000000) + exp(-(7625597484987*87178291200^(1/2))/547421875000000000000000000000000000) + exp(-(6561*2^(1/2))/12500000) + exp(-(177147*24^(1/2))/125000000000) + exp(-(19683*6^(1/2))/625000000) + exp(-81/2500) + exp(-729/125000) + exp(-(387420489*362880^(1/2))/21875000000000000000000) + exp(-(43046721*5040^(1/2))/1093750000000000000) + exp(-(847288609443*6227020800^(1/2))/782031250000000000000000000000000) + exp(-(387420489*40320^(1/2))/437500000000000000000) + exp(-(31381059609*39916800^(1/2))/6015625000000000000000000000) + exp(-(4782969*720^(1/2))/3125000000000000)))^2 + ((9*exp(-(94143178827*479001600^(1/2))/1203125000000000000000000000000))/50 + (9*exp(-(3486784401*3628800^(1/2))/10937500000000000000000000))/50 + (9*exp(-(1594323*120^(1/2))/31250000000000))/50 + (9*exp(-(7625597484987*87178291200^(1/2))/547421875000000000000000000000000000))/50 + (9*exp(-(6561*2^(1/2))/12500000))/50 + (9*exp(-(177147*24^(1/2))/125000000000))/50 + (9*exp(-(19683*6^(1/2))/625000000))/50 + (9*exp(-81/2500))/50 + (9*exp(-729/125000))/50 + (9*exp(-(387420489*362880^(1/2))/21875000000000000000000))/50 + (9*exp(-(43046721*5040^(1/2))/1093750000000000000))/50 + (9*exp(-(847288609443*6227020800^(1/2))/782031250000000000000000000000000))/50 + (9*exp(-(387420489*40320^(1/2))/437500000000000000000))/50 + (9*exp(-(31381059609*39916800^(1/2))/6015625000000000000000000000))/50 + (9*exp(-(4782969*720^(1/2))/3125000000000000))/50 - 11^(1/2)*(exp(-(94143178827*479001600^(1/2))/1203125000000000000000000000000) + exp(-(3486784401*3628800^(1/2))/10937500000000000000000000) + exp(-(1594323*120^(1/2))/31250000000000) + exp(-(7625597484987*87178291200^(1/2))/547421875000000000000000000000000000) + exp(-(6561*2^(1/2))/12500000) + exp(-(177147*24^(1/2))/125000000000) + exp(-(19683*6^(1/2))/625000000) + exp(-81/2500) + exp(-729/125000) + exp(-(387420489*362880^(1/2))/21875000000000000000000) + exp(-(43046721*5040^(1/2))/1093750000000000000) + exp(-(847288609443*6227020800^(1/2))/782031250000000000000000000000000) + exp(-(387420489*40320^(1/2))/437500000000000000000) + exp(-(31381059609*39916800^(1/2))/6015625000000000000000000000) + exp(-(4782969*720^(1/2))/3125000000000000)))^2 + ((9*exp(-(94143178827*479001600^(1/2))/1203125000000000000000000000000))/50 + (9*exp(-(3486784401*3628800^(1/2))/10937500000000000000000000))/50 + (9*exp(-(1594323*120^(1/2))/31250000000000))/50 + (9*exp(-(7625597484987*87178291200^(1/2))/547421875000000000000000000000000000))/50 + (9*exp(-(6561*2^(1/2))/12500000))/50 + (9*exp(-(177147*24^(1/2))/125000000000))/50 + (9*exp(-(19683*6^(1/2))/625000000))/50 + (9*exp(-81/2500))/50 + (9*exp(-729/125000))/50 + (9*exp(-(387420489*362880^(1/2))/21875000000000000000000))/50 + (9*exp(-(43046721*5040^(1/2))/1093750000000000000))/50 + (9*exp(-(847288609443*6227020800^(1/2))/782031250000000000000000000000000))/50 + (9*exp(-(387420489*40320^(1/2))/437500000000000000000))/50 + (9*exp(-(31381059609*39916800^(1/2))/6015625000000000000000000000))/50 + (9*exp(-(4782969*720^(1/2))/3125000000000000))/50 - 13^(1/2)*(exp(-(94143178827*479001600^(1/2))/1203125000000000000000000000000) + exp(-(3486784401*3628800^(1/2))/10937500000000000000000000) + exp(-(1594323*120^(1/2))/31250000000000) + exp(-(7625597484987*87178291200^(1/2))/547421875000000000000000000000000000) + exp(-(6561*2^(1/2))/12500000) + exp(-(177147*24^(1/2))/125000000000) + exp(-(19683*6^(1/2))/625000000) + exp(-81/2500) + exp(-729/125000) + exp(-(387420489*362880^(1/2))/21875000000000000000000) + exp(-(43046721*5040^(1/2))/1093750000000000000) + exp(-(847288609443*6227020800^(1/2))/782031250000000000000000000000000) + exp(-(387420489*40320^(1/2))/437500000000000000000) + exp(-(31381059609*39916800^(1/2))/6015625000000000000000000000) + exp(-(4782969*720^(1/2))/3125000000000000)))^2 + ((9*exp(-(94143178827*479001600^(1/2))/1203125000000000000000000000000))/50 + (9*exp(-(3486784401*3628800^(1/2))/10937500000000000000000000))/50 + (9*exp(-(1594323*120^(1/2))/31250000000000))/50 + (9*exp(-(7625597484987*87178291200^(1/2))/547421875000000000000000000000000000))/50 + (9*exp(-(6561*2^(1/2))/12500000))/50 + (9*exp(-(177147*24^(1/2))/125000000000))/50 + (9*exp(-(19683*6^(1/2))/625000000))/50 + (9*exp(-81/2500))/50 + (9*exp(-729/125000))/50 + (9*exp(-(387420489*362880^(1/2))/21875000000000000000000))/50 + (9*exp(-(43046721*5040^(1/2))/1093750000000000000))/50 + (9*exp(-(847288609443*6227020800^(1/2))/782031250000000000000000000000000))/50 + (9*exp(-(387420489*40320^(1/2))/437500000000000000000))/50 + (9*exp(-(31381059609*39916800^(1/2))/6015625000000000000000000000))/50 + (9*exp(-(4782969*720^(1/2))/3125000000000000))/50 - 14^(1/2)*(exp(-(94143178827*479001600^(1/2))/1203125000000000000000000000000) + exp(-(3486784401*3628800^(1/2))/10937500000000000000000000) + exp(-(1594323*120^(1/2))/31250000000000) + exp(-(7625597484987*87178291200^(1/2))/547421875000000000000000000000000000) + exp(-(6561*2^(1/2))/12500000) + exp(-(177147*24^(1/2))/125000000000) + exp(-(19683*6^(1/2))/625000000) + exp(-81/2500) + exp(-729/125000) + exp(-(387420489*362880^(1/2))/21875000000000000000000) + exp(-(43046721*5040^(1/2))/1093750000000000000) + exp(-(847288609443*6227020800^(1/2))/782031250000000000000000000000000) + exp(-(387420489*40320^(1/2))/437500000000000000000) + exp(-(31381059609*39916800^(1/2))/6015625000000000000000000000) + exp(-(4782969*720^(1/2))/3125000000000000)))^2
>> T=vpa(Q)
T =
20512.9979380502697093544682529
>> N=double(T)
N =
2.0513e+04
now i am confuse what to do next.
采纳的回答
John D'Errico
2023-2-15
编辑:John D'Errico
2023-2-15
You already know how to use both double and vpa. Both return a number, although vpa returns a floating point number that is still in extended precision.
Perhaps your confusion lies in the fact that double returned what looks like only 5 significant digits. The full floating point number is stil stored, however, by default MATLAB only displays 5 digits. You can change that with the format command. So type this in the command window:
format long g
if you want MATLAB to now display 16 digits for all of your work. No matter what though, the full 16 decimal digits (to be pedantic, actually stored will be a binary number with 52 bits, plus exponent and sign) are always stored in a double.
What you want to do with that number is your choice of course. So we cannot help you there.
0 个评论
更多回答(0 个)
另请参阅
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!