input shape to the LSTM net when doing inference for VAD tasks
1 次查看(过去 30 天)
显示 更早的评论
Hi, I am following this article to train a LSTM network for VAD tasks: https://www.mathworks.com/help/deeplearning/ug/voice-activity-detection-in-noise-using-deep-learning.html
My question is, when testing a trained LSTM network, as in the article did, the input data is not shaped as the training input as (#frames, #time_steps, #features), does this mean, when doing inference, the trained LSTM network will take each frame as a input independetly, and classify if this frame is noise or voice, so basically there is no hidden states used when doing inference, am I right?
Thank you in advance!
0 个评论
采纳的回答
Brian Hemmat
2023-3-7
I did not look at the dimensions you're discussing, but I can say that you are correct that the "streaming" code in the example classifies chunks independently. Note that it is calling classify and not classifyAndUpdateState.
Stay tuned for the R2023a release, where we have updated the example to maintain state (should be coming in the next few weeks).
0 个评论
更多回答(0 个)
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Sequence and Numeric Feature Data Workflows 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!