Optimisation of batch time using genetic algorithm and ODE solver
3 次查看(过去 30 天)
显示 更早的评论
Hey guys,
I am trying to adapt the below code to minimise the batch time whilst maintaining the crystal size achieved in the optimisation code below. I am not sure how to go about it given the batch time will change and how to define the time intervals. Any help would be much appreciated.
%Defining temperature bounds
ub = 315*ones(1,5);
lb = 273*ones(1,5);
Aeq = [];
beq =[];
%Defining only cooling allowed (With known initial and final temp)
To = 315;
Tf = 273;
A = [1 0 0 0 0; -1 1 0 0 0; 0 -1 1 0 0; 0 0 -1 1 0; 0 0 0 -1 0];
b = [To 0 0 0 -Tf];
%Other required definitions for GA optimiser
nvars = 5;
fitfun = @Q4;
C0 = 0.0256;
% Opitimiser
options = optimoptions(@ga,'MutationFcn',@mutationadaptfeasible);
options = optimoptions(options,'PlotFcn',{@gaplotbestf}, ...
'Display','iter');
[x,fval] = ga(fitfun,nvars,A,b,Aeq,beq,lb,ub,[],options);
%Initial conditions
x0= [1e-10 0 0 0 C0 0 To];
% Simulation time and time step
t(1) = 0;
tf = 80;
Dt = tf./5;
% Creating matrix to enable plotting of results
Time = [];
XX=[];
%Rate of cooling and discritised time
[f] = @(R) (R>=-2 & R<=0);
for i=1:1:5
t(2) = t(1) + Dt;
x(end,5) = 273;
if i == 1
R = (x(i)-To)./Dt;
@(R) (R>=-2 & R<=0);
else
R = (x(i)-x(i-1))./Dt;
@(R) (R>=-2 & R<=0);
end
% Calling the simulator
[time,X] = ode45(@Q4Model, [t(1) t(2)], x0, [], R);
x0 = X(end,:);
Time =[Time;time];
XX =[XX;X];
t(1) = t(2);
X=real(X);
XX=real(XX);
end
%Plotting Figures
figure
subplot(2,2,1),plot(Time,XX(:,5),'m'), title('a) Concentration'), xlabel('Time (mins)'), ylabel('Concentration (g/g)')
subplot(2,2,2),plot(Time,XX(:,6),'m'), title('b) Mean crystal size'), xlabel('Time (mins)'), ylabel('Mean crystal size (m)')
subplot(2,2,3),plot(Time,XX(:,7),'m'), title('c) Temperature'), xlabel('Time (mins)'), ylabel('Temperature (K)')
subplot(2,2,4),plot(Time,gradient(XX(:,7),Time),'m'), title('d) Rate of cooling'), xlabel('Time (mins)'), ylabel('Cooling rate (K/min)')
function [f] = Q4(T)
% Initial conditions
To = 315;
Tf = 273;
C0 = 0.0256;
x0= [1e-10 0 0 0 C0 0 To];
t(1) = 0;
tf = 80;
% Discretized time
Dt = tf./5;
@(R) (R>=-2 & R<=0);
for i=1:1:5
t(2) = t(1) + Dt;
@(R) (R>=-2 & R<=0);
if i == 1
R = (T(i)-To)./Dt;
else
R = (T(i)-T(i-1))./Dt;
@(R) (R>=-2 & R<=0);
end
% Call the simulator
[t,X] = ode45(@Q4Model, [t(1) t(2)], x0, [], R);
x0 = X(end,:);
t(1) = t(2);
X(end,5)=Tf;
X=real(X);
@(R) (R>=-2 & R<=0);
end
%Objective function
f = -X(end,6);
end
%Mathematical model
function dxdt = Q4Model(t,x,R)
%Variables
mu0 = x(1);
mu1 = x(2);
mu2 = x(3);
mu3 = x(4);
C = x(5);
d = x(6);
T = x(7);
%Constants
kb = 7.8e19;
kg = 0.017;
kv = 0.24;
rho = 1.296e6;
tf=80;
Dt = tf./5;
b=6.2;
g=1.5;
%Concentration Equations
Cs = 1.5846e-5 * T.^2 - 9.0567e-3 * T + 1.3066;
B = kb * (C - Cs).^b;
G = kg * (C - Cs).^g;
%Diffrential Equations
dmu0dt = B;
dmu1dt = G * mu0;
dmu2dt = 2 * G * mu1;
dmu3dt = 3 * G * mu2;
dCdt = -3 * kv * rho * mu3 * G;
dddt = (mu1./mu0)./Dt;
dTdt=R;
dxdt = [dmu0dt; dmu1dt; dmu2dt; dmu3dt; dCdt; dddt; dTdt];
end
0 个评论
回答(1 个)
Alan Weiss
2023-3-14
I do not know what the batch time and crystal size mean in your model, so I cannot tell you directly what to do.
I can tell you that you are likely wasting a good deal of time in your process by using ga as the optimizer. I see nothing integer-constrained or discontinuous in your model. I thnk that you would do much better to use fmincon as the optimizer, or at the very least patternsearch instead of ga. For fmincon you might need to set a larger-than-default value of the FiniteDifferenceStepSize option; maybe try 1e-6 or 1e-5 to start. See Optimize ODEs in Parallel and Optimizing a Simulation or Ordinary Differential Equation.
Alan Weiss
MATLAB mathematical toolbox documentation
另请参阅
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!