which of the following sets vectors are independent?

1 次查看(过去 30 天)
How to use function rank to judge" sint,cost,cos(2t)" are independent vectors??

采纳的回答

Torsten
Torsten 2023-3-17
编辑:Torsten 2023-3-17
In order to prove that sin(t), cos(t) and cos(2*t) are independent, you have to show that if
f(t) = a*sin(t) + b*cos(t) + c*cos(2*t)
for scalars a, b, c in IR is the identical null function (i.e. f(t) = 0 for all t), then a,b and c must all be zero.
So assume f is the null function.
Then the expression a*sin(t) + b*cos(t) + c*cos(2*t) will give zero especially when you insert t=0, t=pi/2 and t=pi.
See what follows for a,b and c by setting up the corresponding (3x3) linear system of equations for a, b and c and solving it - maybe by determining the rank of the coefficient matrix, if your assignment says you should do so.
  5 个评论
Torsten
Torsten 2023-3-18
The dimension of the three vectors is not infinity and such a thing as a "rank" for functions does not exist.
To determine whether the three functions span a three-dimensional vector space, you can either proceed as I suggested or - if you already heard about this in your course - use the Wronskian:

请先登录,再进行评论。

更多回答(0 个)

类别

Help CenterFile Exchange 中查找有关 Linear Algebra 的更多信息

产品


版本

R2022a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by