How can I plot a second order differential equation with boundary condition using fourth order Runge-Kutta method?
8 次查看(过去 30 天)
显示 更早的评论
%%%%%%%%%%%%%%%% Runga-Kutta%%%%%%%%%%%%%%%%
h=0.0001;
xfinal=d;
x(1)=0;
y(1)=0; % initial value of y
y(xfinal)=0; % final value of y
% Let y' = z (f1) and y" = z' (f2);
f1 = @(x, y, z) z;
f2 = @(x, y, z) ky^2*y-(ky*(-2*W*(pi/d)*tan(2*pi*x/d)+2*u0*((pi/d)^2)*cos(2*pi*x/d))*y)/(OP3-ky*u0*(sin(pi*x/d).^2-1/2)+...
B*(OP3-ky*u0*(sin(pi*x/d).^2-1/2)-A*(-2*W*(pi/d)*tan(2*pi*x/d)+2*u0*((pi/d)^2)*cos(2*pi*x/d)-ky*(OP3-ky*u0*(sin(pi*x/d).^2-1/2))))*(1-...
M*(opi^2)/(M*OP3^2-gi*Ti*ky^2)));
for i=1:ceil(xfinal/h)
x(i+1)=x(i)+h;
K1y = f1(x(i), y(i), z(i));
K1z = f2(x(i), y(i), z(i));
K2y = f1(x(i)+0.5*h, y(i)+0.5*K1y*h, z(i)+0.5*K1z*h);
K2z = f2(x(i)+0.5*h, y(i)+0.5*K1y*h, z(i)+0.5*K1z*h);
K3y = f1(x(i)+0.5*h, y(i)+0.5*K2y*h, z(i)+0.5*K2z*h);
K3z = f2(x(i)+0.5*h, y(i)+0.5*K2y*h, z(i)+0.5*K2z*h);
K4y = f1(x(i)+h, y(i)+K3y*h, z(i)+K3z*h);
K4z = f2(x(i)+h, y(i)+K3y*h, z(i)+K3z*h);
y(i+1) = y(i)+(K1y+2*K2y+2*K3y+K4y)*h/6;
z(i+1) = z(i)+(K1z+2*K2z+2*K3z+K4z)*h/6;
end
plot(x,y,'-','linewidth',1)
hold on
1 个评论
John D'Errico
2023-3-17
It looks like you already solved the ODE, and plotted it. Where is the problem? (Even so, if this were not homework, as it surely is, you should be using an ODE solver, not writing your own code.)
回答(1 个)
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Ordinary Differential Equations 的更多信息
产品
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!