Speeding up matrix operations

1 次查看(过去 30 天)
Hey all,
I would like advice on speeding up the following operation:
Suppose we have a filled NxN matrix A, a filled NxM matrix B with no constraints on the values of each element in matrices A and B. Now we also have an empty NxM matrix C whose elements are defined as follows:
for i = 1:N
for j = 1:M
C(i,j) = trapz(A(i,:).*B(:,j).')
end
end
Clearly for very large N and M, this becomes a very slow process and it seems possible to vectorize or do away with the loop but I am unsure how.
Thanks.
  2 个评论
Cameron
Cameron 2023-3-23
Did you mean
C(i,j) = trapz(A(i,:),B(:,j))
or
C(i,j) = sum(trapz(A(i,:).*B(:,j)))
or something else? Because when I run a sample bit of code like this
x = ([1:10])';
A = x*(1:10); %10 x 10 array
B = x./(1:10); %10 x 10 array
N = 1:size(A,1);
M = 1:size(B,1);
for i = N
for j = M
C(i,j) = trapz(A(i,:).*B(:,j))
end
end
the value for C will be a 1x10 array which cannot fit into your original C(i,j) index.
bil
bil 2023-3-23
编辑:bil 2023-3-23
Ah, good catch sorry about that. I wanted trapz of the elementwise product between the i'th row of A and the j'th column of B, so it should really be
C(i,j) = trapz(A(i,:).*B(:,j).')
I have fixed it in my original post.

请先登录,再进行评论。

采纳的回答

Bruno Luong
Bruno Luong 2023-3-23
Instead of calling trapz, use matrix multiplication, and this probably beats anything out there in term of speed and memory
A = rand(4,10);
B = rand(10,5);
N = size(A,1);
M = size(B,2);
C = zeros(N,M);
for i = 1:N
for j = 1:M
C(i,j) = trapz(A(i,:).*B(:,j).');
end
end
C
C = 4×5
2.3135 3.1579 2.4456 2.5958 1.1064 2.1002 3.4828 2.3818 2.5174 1.2254 1.8511 1.9244 1.6724 1.9377 0.8731 2.9940 3.7654 2.9410 3.9024 1.2115
AA = A; AA(:,[1 end]) = AA(:,[1 end]) / 2;
E = AA*B
E = 4×5
2.3135 3.1579 2.4456 2.5958 1.1064 2.1002 3.4828 2.3818 2.5174 1.2254 1.8511 1.9244 1.6724 1.9377 0.8731 2.9940 3.7654 2.9410 3.9024 1.2115
  1 个评论
bil
bil 2023-3-24
Great! Looking directly into the integration formula is a good idea, thanks!

请先登录,再进行评论。

更多回答(2 个)

Ashu
Ashu 2023-3-23
编辑:Ashu 2023-3-23
Hi Bil,
I understand that you want to speedup you code. You can try the following approaches for the same.
arraySize = 1000;
x = ([1:arraySize])';
A = x*(1:arraySize);
B = x./(1:arraySize);
N = 1:size(A,1);
M = 1:size(B,1);
C = zeros(arraySize);
D = zeros(arraySize);
E = zeros(arraySize);
% parallelized loop
tic
parfor i = N
for j = M
C(i,j) = trapz(A(i,:).*B(:,j).');
end
end
Starting parallel pool (parpool) using the 'Processes' profile ...
T1 = toc;
% vectorized
tic
for i = N
D(i,:) = trapz((A(i,:).').*B);
end
T2 = toc;
% simple for loops
tic
for i = N
for j = M
E(i,j) = trapz(A(i,:).*B(:,j).');
end
end
T3 = toc;
Here you can compare the Elapsed Time and see that T1<T2<T3.
To vectorise the operation, you need to understand how 'trapz' works.
If Y is a matrix, then 'trapz(Y)' integrates over each column and returns a row vector of integration values.
That is why while vectorizing the inner for loop, you should transpose A(i,:) and not B.
Now to vectorize the outer for loop you can try to understand the order of operations and move ahead.
To know more about 'trapz', you can refer :
To know more about parallel for loops, you can refer:
Hope it helps!
  3 个评论
Ashu
Ashu 2023-3-23
编辑:Ashu 2023-3-23
I have added some more information about vectorization in the answer. I have vectorized the inner for loop, you can do some more analysis of how 'trapz' works with matrices and vectorize the outer for loop.
bil
bil 2023-3-24
Thank you, this response was very helpful!

请先登录,再进行评论。


Bruno Luong
Bruno Luong 2023-3-23
编辑:Bruno Luong 2023-3-23
All loops are removed, but the memory requirement might be an issue.
As I don't know what mean "very large N, M" I can't make adapt the code and make any compromise.
A = rand(4,10);
B = rand(10,5);
N = size(A,1);
M = size(B,2);
C = zeros(N,M);
for i = 1:N
for j = 1:M
C(i,j) = trapz(A(i,:).*B(:,j).');
end
end
C
C = 4×5
2.0640 2.3220 1.5734 1.5456 1.0978 1.8355 2.1440 2.2892 1.8441 1.4358 2.2730 2.5273 2.2265 1.9894 1.8680 3.5998 4.1238 3.5027 3.1071 2.6166
% is equivalent to
D = reshape(trapz(A.*reshape(B,[1 size(B)]),2),[N M])
D = 4×5
2.0640 2.3220 1.5734 1.5456 1.0978 1.8355 2.1440 2.2892 1.8441 1.4358 2.2730 2.5273 2.2265 1.9894 1.8680 3.5998 4.1238 3.5027 3.1071 2.6166

类别

Help CenterFile Exchange 中查找有关 Numerical Integration and Differentiation 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by