How to extract diagonal elements of multidimensional array ?

19 次查看(过去 30 天)
If I have a m-order n-dimensional tensor. How should I extract the diagonal elements ?
For example
% Generate a 3-order 4-dimensional tensor
rng('default')
A = rand(4,4,4)
A =
A(:,:,1) = 0.8147 0.6324 0.9575 0.9572 0.9058 0.0975 0.9649 0.4854 0.1270 0.2785 0.1576 0.8003 0.9134 0.5469 0.9706 0.1419 A(:,:,2) = 0.4218 0.6557 0.6787 0.6555 0.9157 0.0357 0.7577 0.1712 0.7922 0.8491 0.7431 0.7060 0.9595 0.9340 0.3922 0.0318 A(:,:,3) = 0.2769 0.6948 0.4387 0.1869 0.0462 0.3171 0.3816 0.4898 0.0971 0.9502 0.7655 0.4456 0.8235 0.0344 0.7952 0.6463 A(:,:,4) = 0.7094 0.6551 0.9597 0.7513 0.7547 0.1626 0.3404 0.2551 0.2760 0.1190 0.5853 0.5060 0.6797 0.4984 0.2238 0.6991
The diagonal elements are A(1,1,1) = 0.8147, A(2,2,2) = 0.0357, A(3,3,3) = 0.7655 and A(4,4,4) = 0.6991.
I was hoping to have a tensor_diag function that takes a tensor A as an input parameter and returns a vector consisting of its diagonal elements.
  3 个评论
Stephen23
Stephen23 2023-3-23
编辑:Stephen23 2023-3-23
@Mattia Marsetti: your code throws an error on the example array:
rng('default')
A = rand(4,4,4)
A =
A(:,:,1) = 0.8147 0.6324 0.9575 0.9572 0.9058 0.0975 0.9649 0.4854 0.1270 0.2785 0.1576 0.8003 0.9134 0.5469 0.9706 0.1419 A(:,:,2) = 0.4218 0.6557 0.6787 0.6555 0.9157 0.0357 0.7577 0.1712 0.7922 0.8491 0.7431 0.7060 0.9595 0.9340 0.3922 0.0318 A(:,:,3) = 0.2769 0.6948 0.4387 0.1869 0.0462 0.3171 0.3816 0.4898 0.0971 0.9502 0.7655 0.4456 0.8235 0.0344 0.7952 0.6463 A(:,:,4) = 0.7094 0.6551 0.9597 0.7513 0.7547 0.1626 0.3404 0.2551 0.2760 0.1190 0.5853 0.5060 0.6797 0.4984 0.2238 0.6991
get_tensor(A)
Index in position 4 exceeds array bounds. Index must not exceed 1.

Error in solution>get_tensor (line 19)
out(i)=eval(str);
function out=get_tensor(v)
size_v=size(v);
if sum(size_v == size_v(1))<numel(size_v)
error('the input vector is not a sqare matrix');
end
N = size_v(1);
out=zeros(N,1);
for i=1:N
str='v(';
for s=1:N
str=[str 'i,'];
end
str(end:end+1)=');';
out(i)=eval(str);
end
end
Note that you could easily replace the evil EVAL with a cell array and a comma-separated list.

请先登录,再进行评论。

采纳的回答

the cyclist
the cyclist 2023-3-23
rng('default')
N = 4;
A = rand(N,N,N);
A(1:N^2+N+1:end)
ans = 1×4
0.8147 0.0357 0.7655 0.6991
  5 个评论
the cyclist
the cyclist 2023-3-23
Ah, I read your question too quickly, and didn't make my solution general enough. Glad you found it.

请先登录,再进行评论。

更多回答(1 个)

Bruno Luong
Bruno Luong 2023-3-23
N = 7;
A = rand(N,N,N,N,N);
p=ndims(A);
N=length(A);
% Method 1: generalization of cyclist's answer
step = polyval(ones(1,p),N);
idx = 1:step:N^p;
A(idx)
ans = 1×7
0.4728 0.2804 0.8097 0.9442 0.5680 0.1666 0.9129
% Method 2
c = repmat({1:N}, [1,p]);
idx = sub2ind(size(A), c{:});
A(idx)
ans = 1×7
0.4728 0.2804 0.8097 0.9442 0.5680 0.1666 0.9129

类别

Help CenterFile Exchange 中查找有关 Operating on Diagonal Matrices 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by