solve the mass spring system where the mass matrix depends explicitly on time
10 次查看(过去 30 天)
显示 更早的评论
Hello everyone,
I was wondering how to solve a system of two ODEs where the mass matrix is time dependent. The system of differential equation is in the following form:
[M]*X_double_dot +K*X=0;
where K=[2 1;5 8] and [M]=[t 0; 0 t], t is the time.
My question is : is it possible to solve this kind of ODEs with ode functions (ode45, ode15s,...) or one should evaluate the mass matrix at each time step ?
Best Regards,
Nado
1 个评论
Sam Chak
2023-4-12
Yes, possible. The total rocket mass also decreases as the acceleration of the rocket increases due to fuel mass burns away.
采纳的回答
Torsten
2023-4-12
Setting y1' = y3 and y2' = y4, you arrive at the following code:
M = @(t) [t 0; 0 t];
K = [2 1;5 8];
MM = @(t)[eye(2),zeros(2);zeros(2),M(t)];
KK = [zeros(2),-eye(2);K,zeros(2)];
fun = @(t,y) -KK*y;
options = odeset('Mass',MM,'MStateDependence','none');
y0 = [0 0 1 1];
[T,Y] = ode45(fun,[0 1],y0);
plot(T,Y)
更多回答(0 个)
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Ordinary Differential Equations 的更多信息
产品
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!