Seventh order differential equation
12 次查看(过去 30 天)
显示 更早的评论
Hello,
I would like to solve this system of differential equations in Matlab (and in the end I would like to plot tau and sigma for -l and +l x values):
with these BCs:
where P, h_i, G_i, h_i are numbers (which I would like to define in the code).
Here I started with this:
% y''''''' - a*y'''''' + b*y''' - c*y' = 0
syms s x y(x) Y
Dy = diff(y);
D2y = diff(y,2);
D3y = diff(y,3);
D4y = diff(y,4);
D5y = diff(y,5);
D6y = diff(y,6);
D7y = diff(y,7);
a==10
b==60
c==40
Eqn = D7y - a*D5y + b*D3y -c*Dy == 0;
0 个评论
采纳的回答
Torsten
2023-4-14
编辑:Torsten
2023-4-15
% Set model parameters
l = 1;
P = 1;
Ga = 1;
Eatilde = 1;
ha = 1;
E1tilde = 1;
h1 = 1;
E2tilde = 1;
h2 = 1;
xmesh = linspace(-l,l,100);
solinit = bvpinit(xmesh, [1 1 1 1 1 1 1 0 0 0]);
sol = bvp4c(@(x,y)bvpfcn(x,y,l,P,Ga,Eatilde,ha,E1tilde,h1,E2tilde,h2), @(ya,yb)bcfcn(ya,yb,l,P,Ga,Eatilde,ha,E1tilde,h1,E2tilde,h2),solinit);
x = sol.x;
tau = sol.y(1,:);
sigma = ((4/(E1tilde*h1)+2/(E2tilde*h2))*sol.y(2,:)- ha/Ga*sol.y(4,:))/(6/(E1tilde*h1^2));
figure(1)
plot(x,tau)
figure(2)
plot(x,sigma)
function dydx = bvpfcn(x,y,l,P,Ga,Eatilde,ha,E1tilde,h1,E2tilde,h2)
sigma = ((4/(E1tilde*h1)+2/(E2tilde*h2))*y(2) - ha/Ga*y(4))/(6/(E1tilde*h1^2));
d7ydx7 = Ga/ha*(4/(E1tilde*h1)+2/(E2tilde*h2))*y(6) - Eatilde/ha*12/(E1tilde*h1^3)*y(4) + (12*Eatilde*Ga/(E1tilde^2*h1^4*ha^2) + 24*Eatilde*Ga/(E1tilde*E2tilde*h1^3*h2*ha^2))*y(2);
dydx = [y(2);y(3);y(4);y(5);y(6);y(7);d7ydx7;y(1);sigma;x*sigma];
end
function res = bcfcn(ya,yb,l,P,Ga,Eatilde,ha,E1tilde,h1,E2tilde,h2)
d2sigma_a = ((4/(E1tilde*h1)+2/(E2tilde*h2))*ya(4) - ha/Ga*ya(6))/(6/(E1tilde*h1^2));
d2sigma_b = ((4/(E1tilde*h1)+2/(E2tilde*h2))*yb(4) - ha/Ga*yb(6))/(6/(E1tilde*h1^2));
res = [ya(8);yb(8)+P;ya(9);yb(9);ya(10);yb(10)-P*(h1+ha)/2;d2sigma_a;d2sigma_b;ya(2)-Ga/ha*P/(E1tilde*h1);yb(2)+Ga/ha*2*P/(E2tilde*h2)];
end
7 个评论
Torsten
2023-4-18
编辑:Torsten
2023-4-18
Try this code whether you get a different result.
It's the analytical solution of your equation.
% Set model parameters
l = 25;
P = 100;
Ga = 1071;
Eatilde = 3000;
ha = 0.3;
E1tilde = 1;
h1 = 5;
E2tilde = 75000;
h2 = 5;
syms x tau(x)
% Solve differential equation
eqn = diff(tau,x,7) - Ga/ha*(4/(E1tilde*h1)+2/(E2tilde*h2))*diff(tau,x,5) + Eatilde/ha*12/(E1tilde*h1^3)*diff(tau,x,3) - (12*Eatilde*Ga/(E1tilde^2*h1^4*ha^2) + 24*Eatilde*Ga/(E1tilde*E2tilde*h1^3*h2*ha^2))*diff(tau,x) == 0;
tau = dsolve(eqn)
tau0 = tau;
tau1 = diff(tau,x);
tau2 = diff(tau,x,2);
tau3 = diff(tau,x,3);
tau4 = diff(tau,x,4);
tau5 = diff(tau,x,5);
tau6 = diff(tau,x,6);
tau7 = diff(tau,x,7);
sigma = ((4/(E1tilde*h1)+2/(E2tilde*h2))*tau1 - ha/Ga* tau3)/(6/(E1tilde*h1^2));
sigma2 = diff(sigma,x,2);
% Solve for free parameters in solution from boundary conditions
cond1 = int(tau0,x,-1,1) == -P;
cond2 = int(sigma,-l,l) == 0;
cond3 = int(x*sigma,-l,l) == P*(h1+ha)/2;
cond4 = subs(sigma2,x,-l) == 0;
cond5 = subs(sigma2,x,l) == 0;
cond6 = subs(tau1,x,-l) == Ga/ha*P/(E1tilde*h1);
cond7 = subs(tau1,x,l) == -Ga/ha*2*P/(E2tilde*h2);
[A,b] = equationsToMatrix([cond1 cond2 cond3 cond4 cond5 cond6 cond7]);
coeffs = (double(A)\double(b)).';
%Insert boundary conditions in general solution
vars = symvar(tau)
tau0num = subs(tau0,vars(1:7),coeffs);
tau1num = subs(tau1,vars(1:7),coeffs);
tau2num = subs(tau2,vars(1:7),coeffs);
tau3num = subs(tau3,vars(1:7),coeffs);
tau4num = subs(tau4,vars(1:7),coeffs);
tau5num = subs(tau5,vars(1:7),coeffs);
tau6num = subs(tau6,vars(1:7),coeffs);
tau7num = subs(tau7,vars(1:7),coeffs);
sigmanum = subs(sigma,vars(1:7),coeffs);
sigma2num = subs(sigma2,vars(1:7),coeffs);
% Check solution
double(int(tau0num,x,-l,l)+P)
double(int(sigmanum,x,-l,l))
double(int(x*sigmanum,-l,l) - P*(h1+ha)/2)
double(subs(sigma2num,x,-l))
double(subs(sigma2num,x,l))
double(subs(tau1num,x,-l)-Ga/ha*P/(E1tilde*h1))
double(subs(tau1num,x,l)+Ga/ha*2*P/(E2tilde*h2))
error = tau7num - Ga/ha*(4/(E1tilde*h1)+2/(E2tilde*h2))*tau5num + Eatilde/ha*12/(E1tilde*h1^3)*tau3num - (12*Eatilde*Ga/(E1tilde^2*h1^4*ha^2) + 24*Eatilde*Ga/(E1tilde*E2tilde*h1^3*h2*ha^2))*tau1num;
% Plot solution
figure(1)
fplot(error,[-l l])
figure(2)
fplot(tau0num,[-l l])
figure(3)
fplot(sigmanum,[-l l])
更多回答(1 个)
Torsten
2023-4-13
移动:Torsten
2023-4-13
A symbolic approach will lead you nowhere because you had to solve for the general roots of a polynomial of degree 7 which is impossible.
So think about a numerical approach.
In order to cope with the integral boundary conditions, I suggest you additionally solve for the functions
F1(y) = integral_{x=-l}^{x=y} tau dx
F2(y) = integral_{x=-l}^{x=y} sigma*x dx
by solving
dF1/dx = tau(x)
dF2/dx = sigma(x)*x
with the boundary conditions
F1(-l) = 0
F1(l) = -P
F2(-l) = 0
F2(l) = P/2 * (h_1+h_a)
Try bvp4c or bvp5c for a solution.
4 个评论
Torsten
2023-4-14
Look at the examples under
They should show you how to proceed.
If you encounter problems somewhere with your code, you can come back here to ask.
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Calculus 的更多信息
产品
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!