# Matlab analytical FT and FFT comparison

25 次查看（过去 30 天）
Ongun2015-3-28

My aim is to compare the analytical Fourier transform of a function with the FFT of the same function using Matlab routines and correct normalization coefficients. In order to evaluate the analytical FT I used the function fourier and for FFT I use the function fft while normalizing with respect to the length of the vector. Later I plot the FFT till the Nyquist frequency and also plot the results of the analytical FT on the same plot but their centers and height does not match. I am not that familiar with FFTs and I would really appreciate it if someone pointed me in the right direction. You can check the working code snippet below:
close all;
clear all;
clc;
N = 100;
dt = 0.01;
Fs = 1/dt;
F = zeros(N,1);
n0 = 50;
for n = 1:N
F(n) = exp(-((n-n0)*dt)^2*pi^2);
end
G_cmp = fft(F)/N;
f_arr = Fs/2*linspace(0,1,N/2+1);
syms t f
F_an = exp(-(t-n0*dt)^2*pi^2);
G_an = fourier(F_an, t, f);
f1 = figure;
p1 = plot(dt*(1:N), F);
saveas(f1, 'pulse_time.png');
f2 = figure;
p2 = plot(f_arr, 2*abs(G_cmp(1:N/2+1)), f_arr, 2*abs(subs(G_an, 'f', f_arr)));
saveas(f2, 'pulse_freq.png');

### 回答（1 个）

Youssef Khmou 2015-3-29

numerical fft requires a shift if we want to visualize the spectrum with both negative and positive frequencies, scaling problem is not yet solved, however try the following version, the theoretical transformation is calculated using 2*pi*f instead of f :
close all;
clear all;
clc;
N = 100;
dt = 0.01;
Fs = 1/dt;
F = zeros(N,1);
n0 = 50;
for n = 1:N
F(n) = exp(-((n-n0)*dt)^2*(pi^2));
end
G_cmp = fft(F)/((N));
f_arr = Fs/2*linspace(-1,1,N);
syms t f
F_an = exp(-(t-n0*dt)^2*(pi^2));
G_an = fourier(F_an, t, 2*pi*f);
f1 = figure;
subplot(1,2,1)
p1 = plot(dt*(1:N), F);
%saveas(f1, 'pulse_time.png');
%f2 = figure;
subplot(1,2,2)
p2 = plot(f_arr, fftshift(2*abs(G_cmp)),'-+', f_arr, 2*abs(subs(G_an, 'f', f_arr)),'r--');
%saveas(f2, 'pulse_freq.png');
##### 3 个评论显示隐藏 2更早的评论
Youssef Khmou 2015-3-29

you are welcome, i have written an fft code previously, here is the implementation :
%==========================================================================
% function z=Fast_Fourier_Transform(x,nfft)
%
% N=length(x);
% z=zeros(1,nfft);
% Sum=0;
% for k=1:nfft
% for jj=1:N
% Sum=Sum+x(jj)*exp(-2*pi*j*(jj-1)*(k-1)/nfft);
% end
% z(k)=Sum;
% Sum=0;% Reset
% end
however for large vector, it is time consuming.

### 类别

Find more on Spectral Measurements in Help Center and File Exchange

### Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by