A faster and more compact way to create a list of distances among all the pairs of points
1 次查看(过去 30 天)
显示 更早的评论
Hi, could you suggest a faster and more compact way to create a list of distances among all the pairs of points?
My attempt here below:
% Input (x and y coordinates of 6 points)
x = [1 2 2 3 4 5];
y = [1 2 3 7 2 5];
% Plot just to see the 6 points
plot(x,y,'o','MarkerFaceColor','b','markersize',15)
xlim([0 10])
ylim([0 10])
% Calculate the distances among each pair of points
Z = squareform(pdist([x' y']));
% Create a list that includes 3 elements: i-point ID, j-point ID, distance(i,j)
k = 1;
for i = 1 : length(x)-1
for j = i+1 : length(x)
list(k,:) = [i j Z(i,j)];
k = k + 1;
end
end
list,
0 个评论
采纳的回答
chicken vector
2023-4-29
编辑:chicken vector
2023-4-29
N = 1e4;
x = randi(10,N,1);
y = randi(10,N,1);
tic
xIdx = repmat(1 : length(x), length(x), 1);
yIdx = xIdx';
vectorIdx = (1 : size(xIdx, 1))' > (1 : size(xIdx, 2));
xy = [x(:), y(:)];
dist = pdist2(xy, xy);
distPdist = dist(vectorIdx);
list = [xIdx(vectorIdx) , ...
yIdx(vectorIdx) , ...
distPdist]
toc
0 个评论
更多回答(2 个)
Image Analyst
2023-4-28
Try pdist2
% Input (x and y coordinates of 6 points)
x = [1 2 2 3 4 5];
y = [1 2 3 7 2 5];
xy = [x(:), y(:)]
% Get distances between every (x,y) point and every other (x,y) point:
distances = pdist2(xy, xy)
12 个评论
Image Analyst
2023-4-28
No, I must be thinking of the old way. Anyway, you can post a "final" fixed up program for a new answer and he can accept that.
chicken vector
2023-4-28
编辑:chicken vector
2023-4-28
You can build the indeces without for loop:
N = 5e2;
x = randi(10,1,N);
y = randi(10,1,N);
% Loop method:
tic;
k = 1;
for i = 1 : length(x)-1
for j = i+1 : length(x)
loopList(k,:) = [i j];
k = k + 1;
end
end
loopTime = toc;
% Vectorised method:
tic;
xIdx = repmat(1 : length(x), length(x), 1);
yIdx = xIdx';
vectorList = [xIdx((1 : size(xIdx, 1))' > (1 : size(xIdx, 2))) , ...
yIdx((1 : size(yIdx, 1))' > (1 : size(yIdx', 2)))];
vectorTime = toc;
fprintf("Time with for loop: %.3f seconds\n", loopTime)
fprintf("Time with vectorisation: %.3f seconds\n", vectorTime)
You can also increase the speed for computing the distance with the following:
% Squareform method:
tic
squareFormZ = squareform(pdist([x' y']));
squareFormTime = toc;
% Vectorised method:
tic;
X = repmat(x, length(x), 1);
Y = repmat(y, length(y), 1);
deltaX = tril(x' - X, -1);
deltaY = tril(y' - Y, -1);
vectorZ = sqrt(deltaX(:).^2 + deltaY(:).^2);
vectorTime = toc;
fprintf("Time with squareform: %.3f seconds\n", squareFormTime)
fprintf("Time with vectorisation: %.3f seconds\n", vectorTime)
You can build your original list with the following wrapped up:
% Data:
x = [1 2 2 3 4 5];
y = [1 2 3 7 2 5];
% Initialise indeces:
xIdx = repmat(1 : length(x), length(x), 1);
yIdx = xIdx';
% Initialise elements distribution:
X = repmat(x, length(x), 1);
Y = repmat(y, length(y), 1);
% Compute distances:
deltaX = tril(x' - X, -1);
deltaY = tril(y' - Y, -1);
% Re-arrange to vector:
deltaX = deltaX((1 : size(deltaX, 1))' > (1 : size(deltaX, 2)));
deltaY = deltaY((1 : size(deltaY, 1))' > (1 : size(deltaY, 2)));
% Build lsit:
list = [xIdx((1 : size(xIdx, 1))' > (1 : size(xIdx, 2))) , ...
yIdx((1 : size(yIdx, 1))' > (1 : size(yIdx', 2))) , ...
sqrt(deltaX.^2 + deltaY.^2)]
0 个评论
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Performance and Memory 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!