已知函数表达式求参数值。

4 次查看(过去 30 天)
tmgseur
tmgseur 2023-5-25
回答: xpertwes 2023-5-25
函数的表达式已知,4个变量已知3个,请问应如何求解剩下的那个参数r?我使用的是solve函数,运行后结果是一大串,没有求出正确结果。求大佬指教,万分感谢!
代码如下:
clc;
clear;
syms M r y L;
L = 17;
M = 0.125;
y = 20;
equ = r*L/12*(1-1/(1+r/12)^12*y) == M;
anws = solve(equ,r)
运行后结果
anws =
root(z^13 + (4893*z^12)/34 + (161352*z^11)/17 + (6448464*z^10)/17 + (173923200*z^9)/17 + (3334877568*z^8)/17 + (46608224256*z^7)/17 + (478300889088*z^6)/17 + (3575727783936*z^5)/17 + (18978317107200*z^4)/17 + (67768555143168*z^3)/17 + (145443888562176*z^2)/17 - (2893274595459072*z)/17 - 13374150672384/17, z, 1)
root(z^13 + (4893*z^12)/34 + (161352*z^11)/17 + (6448464*z^10)/17 + (173923200*z^9)/17 + (3334877568*z^8)/17 + (46608224256*z^7)/17 + (478300889088*z^6)/17 + (3575727783936*z^5)/17 + (18978317107200*z^4)/17 + (67768555143168*z^3)/17 + (145443888562176*z^2)/17 - (2893274595459072*z)/17 - 13374150672384/17, z, 2)
root(z^13 + (4893*z^12)/34 + (161352*z^11)/17 + (6448464*z^10)/17 + (173923200*z^9)/17 + (3334877568*z^8)/17 + (46608224256*z^7)/17 + (478300889088*z^6)/17 + (3575727783936*z^5)/17 + (18978317107200*z^4)/17 + (67768555143168*z^3)/17 + (145443888562176*z^2)/17 - (2893274595459072*z)/17 - 13374150672384/17, z, 3)
root(z^13 + (4893*z^12)/34 + (161352*z^11)/17 + (6448464*z^10)/17 + (173923200*z^9)/17 + (3334877568*z^8)/17 + (46608224256*z^7)/17 + (478300889088*z^6)/17 + (3575727783936*z^5)/17 + (18978317107200*z^4)/17 + (67768555143168*z^3)/17 + (145443888562176*z^2)/17 - (2893274595459072*z)/17 - 13374150672384/17, z, 4)
root(z^13 + (4893*z^12)/34 + (161352*z^11)/17 + (6448464*z^10)/17 + (173923200*z^9)/17 + (3334877568*z^8)/17 + (46608224256*z^7)/17 + (478300889088*z^6)/17 + (3575727783936*z^5)/17 + (18978317107200*z^4)/17 + (67768555143168*z^3)/17 + (145443888562176*z^2)/17 - (2893274595459072*z)/17 - 13374150672384/17, z, 5)
root(z^13 + (4893*z^12)/34 + (161352*z^11)/17 + (6448464*z^10)/17 + (173923200*z^9)/17 + (3334877568*z^8)/17 + (46608224256*z^7)/17 + (478300889088*z^6)/17 + (3575727783936*z^5)/17 + (18978317107200*z^4)/17 + (67768555143168*z^3)/17 + (145443888562176*z^2)/17 - (2893274595459072*z)/17 - 13374150672384/17, z, 6)
root(z^13 + (4893*z^12)/34 + (161352*z^11)/17 + (6448464*z^10)/17 + (173923200*z^9)/17 + (3334877568*z^8)/17 + (46608224256*z^7)/17 + (478300889088*z^6)/17 + (3575727783936*z^5)/17 + (18978317107200*z^4)/17 + (67768555143168*z^3)/17 + (145443888562176*z^2)/17 - (2893274595459072*z)/17 - 13374150672384/17, z, 7)
root(z^13 + (4893*z^12)/34 + (161352*z^11)/17 + (6448464*z^10)/17 + (173923200*z^9)/17 + (3334877568*z^8)/17 + (46608224256*z^7)/17 + (478300889088*z^6)/17 + (3575727783936*z^5)/17 + (18978317107200*z^4)/17 + (67768555143168*z^3)/17 + (145443888562176*z^2)/17 - (2893274595459072*z)/17 - 13374150672384/17, z, 8)
root(z^13 + (4893*z^12)/34 + (161352*z^11)/17 + (6448464*z^10)/17 + (173923200*z^9)/17 + (3334877568*z^8)/17 + (46608224256*z^7)/17 + (478300889088*z^6)/17 + (3575727783936*z^5)/17 + (18978317107200*z^4)/17 + (67768555143168*z^3)/17 + (145443888562176*z^2)/17 - (2893274595459072*z)/17 - 13374150672384/17, z, 9)
root(z^13 + (4893*z^12)/34 + (161352*z^11)/17 + (6448464*z^10)/17 + (173923200*z^9)/17 + (3334877568*z^8)/17 + (46608224256*z^7)/17 + (478300889088*z^6)/17 + (3575727783936*z^5)/17 + (18978317107200*z^4)/17 + (67768555143168*z^3)/17 + (145443888562176*z^2)/17 - (2893274595459072*z)/17 - 13374150672384/17, z, 10)
root(z^13 + (4893*z^12)/34 + (161352*z^11)/17 + (6448464*z^10)/17 + (173923200*z^9)/17 + (3334877568*z^8)/17 + (46608224256*z^7)/17 + (478300889088*z^6)/17 + (3575727783936*z^5)/17 + (18978317107200*z^4)/17 + (67768555143168*z^3)/17 + (145443888562176*z^2)/17 - (2893274595459072*z)/17 - 13374150672384/17, z, 11)
root(z^13 + (4893*z^12)/34 + (161352*z^11)/17 + (6448464*z^10)/17 + (173923200*z^9)/17 + (3334877568*z^8)/17 + (46608224256*z^7)/17 + (478300889088*z^6)/17 + (3575727783936*z^5)/17 + (18978317107200*z^4)/17 + (67768555143168*z^3)/17 + (145443888562176*z^2)/17 - (2893274595459072*z)/17 - 13374150672384/17, z, 12)
root(z^13 + (4893*z^12)/34 + (161352*z^11)/17 + (6448464*z^10)/17 + (173923200*z^9)/17 + (3334877568*z^8)/17 + (46608224256*z^7)/17 + (478300889088*z^6)/17 + (3575727783936*z^5)/17 + (18978317107200*z^4)/17 + (67768555143168*z^3)/17 + (145443888562176*z^2)/17 - (2893274595459072*z)/17 - 13374150672384/17, z, 13)

采纳的回答

xpertwes
xpertwes 2023-5-25
高次方程,没有解析解的,只能求数值解。改成
anws = vpasolve( equ, r )
anws =
-27.398699670401662357941096866568
-0.0046214248194731798182544105886075
3.4362520546865551406937583681345
- 25.335080459266396406439624534127 + 7.7004435898659638427667228730945i
- 25.335080459266396406439624534127 - 7.7004435898659638427667228730946i
- 19.697139523608312629758161913957 + 13.337157865416479834106945429301i
- 19.697139523608312629758161913957 - 13.337157865416479834106945429301i
- 11.99543650427953166119760839527 - 15.399257163971993775718716159912i
- 11.99543650427953166119760839527 + 15.399257163971993775718716159912i
- 4.2931859647230990848983884585091 + 13.333233157998024397668224405529i
- 4.2931859647230990848983884585091 - 13.333233157998024397668224405529i
1.3484946192034535102383444622559 + 7.6902244752546745444820812532662i
1.3484946192034535102383444622559 - 7.6902244752546745444820812532662i
自己根据需要筛选合适的13个根中的某个或某几个
如果要求根为正实数,就只有一个

更多回答(0 个)

类别

Help CenterFile Exchange 中查找有关 Formula Manipulation and Simplification 的更多信息

标签

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!