FEA for cantilever beam

17 次查看(过去 30 天)
Albara
Albara 2023-6-3
what is the problem in this code?
clear; clc;
% Define beam parameters
L = 2; % Length of the beam
num_elements = 100; % Number of elements
num_modes = 6; % Number of modes to calculate
% Prompt user for beam properties
rho = 2711.518;
A = 0.00555;
I = 0.00003186625;
E = 71*10^9;
% Compute element size
dx = L / num_elements;
% Assemble mass and stiffness matrices
M = zeros(num_elements+1, num_elements+1);
K = zeros(num_elements+1, num_elements+1);
for i = 1:num_elements
% Element mass matrix
m = [156 22*dx 54 -13*dx;
22*dx 4*dx^2 13*dx -3*dx^2;
54 13*dx 156 -22*dx;
-13*dx -3*dx^2 -22*dx 4*dx^2] * (rho * A * dx / 420);
% Element stiffness matrix
k = [12 6*dx -12 6*dx;
6*dx 4*dx^2 -6*dx 2*dx^2;
-12 -6*dx 12 -6*dx;
6*dx 2*dx^2 -6*dx 4*dx^2] * (E * I / dx^3);
% Assemble into global mass and stiffness matrices
idx = (i-1)*2 + 1;
M(idx:idx+3, idx:idx+3) = M(idx:idx+3, idx:idx+3) + m;
K(idx:idx+3, idx:idx+3) = K(idx:idx+3, idx:idx+3) + k;
end
% Apply boundary conditions (cantilever beam)
M = M(2:end, 2:end);
K = K(2:end, 2:end);
% Solve eigenvalue problem
[V, D] = eig(K, M);
% Sort eigenvalues and eigenvectors
[D, sort_idx] = sort(diag(D));
V = V(:, sort_idx);
% Extract first num_modes eigenvalues and eigenvectors
omega = sqrt(D(1:num_modes));
modes = V(:, 1:num_modes);
% Plot mode shapes
x = linspace(0, L, num_elements+1);
figure;
hold on;
title('Cantilever Beam Mode Shapes');
xlabel('Beam Length');
ylabel('Displacement');
for i = 1:num_modes
plot(x, [0; modes(:,i)], 'DisplayName', ['Mode ' num2str(i)]);
end
legend;
grid on;
% Display natural frequencies
disp('Natural Frequencies:');
disp(omega);

回答(1 个)

Diwakar Diwakar
Diwakar Diwakar 2023-6-4
Try this code:
clear; clc;
% Define beam parameters
L = 2; % Length of the beam
num_elements = 100; % Number of elements
num_modes = 6; % Number of modes to calculate
% Prompt user for beam properties
rho = 2711.518;
A = 0.00555;
I = 0.00003186625;
E = 71 * 10^9;
% Compute element size
dx = L / num_elements;
% Assemble mass and stiffness matrices
M = zeros((num_elements+1) * 2, (num_elements+1) * 2);
K = zeros((num_elements+1) * 2, (num_elements+1) * 2);
for i = 1:num_elements
% Element mass matrix
m = [156 22*dx 54 -13*dx;
22*dx 4*dx^2 13*dx -3*dx^2;
54 13*dx 156 -22*dx;
-13*dx -3*dx^2 -22*dx 4*dx^2] * (rho * A * dx / 420);
% Element stiffness matrix
k = [12 6*dx -12 6*dx;
6*dx 4*dx^2 -6*dx 2*dx^2;
-12 -6*dx 12 -6*dx;
6*dx 2*dx^2 -6*dx 4*dx^2] * (E * I / dx^3);
% Assemble into global mass and stiffness matrices
idx = (i-1)*2 + 1;
M(idx:idx+3, idx:idx+3) = M(idx:idx+3, idx:idx+3) + m;
K(idx:idx+3, idx:idx+3) = K(idx:idx+3, idx:idx+3) + k;
end
% Apply boundary conditions (cantilever beam)
M = M(3:end, 3:end);
K = K(3:end, 3:end);
% Solve eigenvalue problem
[V, D] = eig(K, M);
% Sort eigenvalues and eigenvectors
[D, sort_idx] = sort(diag(D));
V = V(:, sort_idx);
% Extract first num_modes eigenvalues and eigenvectors
omega = sqrt(D(1:num_modes));
modes = V(:, 1:num_modes);
% Plot x-y axis
x = linspace(0, L, (num_elements+1) * 2);
y = zeros(size(x));
figure;
hold on;
title('Cantilever Beam Mode Shapes');
xlabel('Beam Length');
ylabel('Displacement');
plot(x, y, 'k-');
axis equal;
grid on;
% Display natural frequencies
disp('Natural Frequencies:');
Natural Frequencies:
disp(omega);
1.0e+04 * 0.0341 0.2136 0.5981 1.1720 1.9373 2.8941
  1 个评论
Muhammad Saad
Muhammad Saad 2023-11-29
Can you explain how you applied the boundary conditions?
'% Apply boundary conditions (cantilever beam)
M = M(3:end, 3:end);
K = K(3:end, 3:end);'

请先登录,再进行评论。

类别

Help CenterFile Exchange 中查找有关 Robustness and Worst-Case Analysis 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by