dataset=readmatrix('borsmote_data.xlsx');
dataset = dataset(randperm(sz(1)),:);
traindata=dataset(:,1:7);
trainlabel=categorical(dataset(:,8));
classes = unique(trainlabel)
numClasses = numel(unique(trainlabel))
Ptrain = []; Ttrain = [];
for i = 1 : length(classes)
indi = find(trainlabel==classes(i));
indi = indi(randperm(length(indi)));
indj = round(length(indi)*PD);
Ptrain = [Ptrain; traindata(indi(1:indj),:)]; Ttrain = [Ttrain; trainlabel(indi(1:indj),:)];
Ptest = [Ptest; traindata(indi(1+indj:end),:)]; Ttest = [Ttest; trainlabel(indi(1+indj:end),:)];
Ptrain=(reshape(Ptrain', [7,1,1,size(Ptrain,1)]));
Ptest=(reshape(Ptest', [7,1,1,size(Ptest,1)]));
layers = [imageInputLayer([7 1 1])
convolution2dLayer([3 1],10,'Stride',1)
maxPooling2dLayer(2,'Stride',2,'Padding',[0 0 0 1])
fullyConnectedLayer(numClasses)
options = trainingOptions('adam', ...
'InitialLearnRate',1e-4, ...
'Shuffle','every-epoch', ...
'Plots','training-progress', ...
'ValidationData',{Ptest,Ttest},...
'ExecutionEnvironment', 'cpu', ...
'ValidationPatience',Inf);
net = trainNetwork(Ptrain,Ttrain,layers,options);
Error using trainNetwork
This functionality is not available on remote platforms.
Caused by:
Error using matlab.internal.lang.capability.Capability.require
This functionality is not available on remote platforms.