Hello Samia
We don't have have the specifics of your needs. But you can apply the CNN with Gabor Filter by following steps:
- Generate Gabor filter bank: Create a set of Gabor filters with different orientations and scales. Each filter in the bank represents a specific orientation and scale combination. Something like this:
gaborOrientation = [0 45 90 135];
gaborFilters = cell(length(gaborOrientation), 1);
for i = 1:length(gaborOrientation)
gaborFilters{i} = gabor(gaborSize, gaborOrientation(i));
- Prepare the training dataset: You need to have a set of training images that will be used to train your CNN. Make sure the images are properly labeled with their corresponding classes. make sure to replace 'path_to_training_images' with the actual path to your training image dataset.
trainingImages = imageDatastore('path_to_training_images', 'LabelSource', 'foldernames');
- Preprocess the training dataset: Now you have the dataset, Before feeding the Gabor filters to the CNN, it's a good practice to preprocess the training images. Preprocessing steps may include resizing, normalization, or any other transformations required to enhance the training data.
- Apply the Gabor filters to the training images: For each training image, you will then apply the Gabor filters to extract the features. This can be done by convolving the Gabor filters with the training images using the conv2 function in MATLAB. The resulting feature maps will represent the responses of the Gabor filters to the input images.
numImages = numel(trainingImages.Files);
gaborResponses = zeros(gaborSize, gaborSize, length(gaborOrientation), numImages);
image = readimage(trainingImages, i);
for j = 1:length(gaborOrientation)
gaborResponse = conv2(image, gaborFilters{j}, 'same');
gaborResponses(:, :, j, i) = gaborResponse;
- Train the CNN: Once you have the Gabor filter responses as feature maps, you can use them to train your CNN. You can use MATLAB's Deep Learning Toolbox to define and train your CNN model. This typically involves defining the network architecture, specifying the layers, setting the hyperparameters, and training the network using the feature maps as input.
options = trainingOptions('sgdm', 'MaxEpochs', 10, 'MiniBatchSize', 32, 'Plots', 'training-progress');
trainedNet = trainNetwork(gaborResponses, trainingImages.Labels, layers, options);
Adjust the parameters like gaborSize, gaborOrientation, and the CNN architecture according to your specific requirements.
I hope this helps.