Problem in plotting the convolution

1 次查看(过去 30 天)
I can't plot the convolution of the two signals and I don't know why
dt= 0.0001;
t = 0:dt:10;
xt = 4*cos(2*pi*730*t) +3*cos(2*pi*440*t) + 5*cos(2*pi*490*t);
subplot(2,2,1)
plot(t,xt)
axis([ 0 0.02 -20 20 ])
title(' Ploting x(t)')
xlabel('time')
ylabel('x(t)')
grid on
ht= abs( (1/2*pi*j*t).*( exp(j*1460*pi*t) - exp(j*1450*pi*t)) );
subplot(2,2, 2)
plot(t,ht)
title(' plotting h(t)')
axis( [0 20 0 70] )
xlabel(' Time')
ylabel(' h(t)')
grid on
yt= conv(xt , ht);
subplot(2,2, 3)
plot(t,yt)
title(' plotting y(t)')
axis( [0 20 0 100] )
xlabel(' Time')
ylabel(' y(t)')
grid on

采纳的回答

Star Strider
Star Strider 2023-7-19
Use the 'same' argument so that the output is the same size as the input:
yt= conv(xt , ht, 'same');
This works —
dt= 0.0001;
t = 0:dt:10;
xt = 4*cos(2*pi*730*t) +3*cos(2*pi*440*t) + 5*cos(2*pi*490*t);
subplot(2,2,1)
plot(t,xt)
axis([ 0 0.02 -20 20 ])
title(' Ploting x(t)')
xlabel('time')
ylabel('x(t)')
grid on
ht= abs( (1/2*pi*j*t).*( exp(j*1460*pi*t) - exp(j*1450*pi*t)) );
subplot(2,2, 2)
plot(t,ht)
title(' plotting h(t)')
axis( [0 20 0 70] )
xlabel(' Time')
ylabel(' h(t)')
grid on
yt= conv(xt , ht, 'same');
subplot(2,2, 3)
plot(t,yt)
title(' plotting y(t)')
axis( [0 20 0 100] )
xlabel(' Time')
ylabel(' y(t)')
grid on
.
  4 个评论

请先登录,再进行评论。

更多回答(1 个)

Paul
Paul 2023-7-19
编辑:Paul 2023-7-19
Hi Abdullah,
Although not stated explicitly in the Question, I'm going to assume that
a) the objective is compute the convolution integral, i.e., xt and ht are continuous time signals, and
b) xt and ht are both zero for t < 0 adn t > 10
If those assumptions are correct, here's a similar problem that shows how to use conv to approximate the convolution integral. Maybe you can adapt it to your problem.
Let's use two simple functions for x(t) and h(t), both of which are zero outside the interval 0 <= t <= 3
syms t real
x(t) = exp(-0.2*t)*rectangularPulse(0,3,t);
h(t) = exp(-0.3*t)*rectangularPulse(0,3,t);
By defintion, the convolution integral for these signals is
syms tau real
y(t) = simplify(int(x(tau)*h(t-tau),tau,0,t))
y(t) = 
Plot x(t), h(t), and y(t). The duration of y(t) (6 seconds) is the sum of the durations of x(t) and h(t).
fplot([x(t) h(t) y(t)],[0 7])
Now use conv with numerical valuse of x(t) and h(t) sampled at 0.01 seconds
t = 0:.01:3;
x = exp(-0.2*t);
h = exp(-0.3*t);
To get the correct answer, we need to use the full convolution and multiply the result by the sampling period (because both x(t) and h(t) are finite)
y = conv(x,h,'full')*0.01; % 'full' is the default, so not necessary to specify explicitly
Of course, y will be longer than x and h, so we have to define a new time vector to plot it.
hold on
plot((0:numel(y)-1)*0.01,y)
For this problem, if we use the 'same' convolution, we get a y that has the same number of elements x and h and therefore covers 3 seconds. But that that's not sufficient to approximate the 6-second convolution integral. And we can see that plotting it would require a shift to the right by 1.5 seconds to match up with the "central" part of the convolution integral.
y = conv(x,h,'same')*0.01;
plot(t,y)
legend('x(t)','h(t)','y(t)','yconv-full','yconv-same')
  2 个评论
Paul
Paul 2023-7-28
I didn't notice the Octave tag because I don't look at the tags.
I'm also not sure about how to interpret this comment.
Are questions tagged with "octave" not supposed to be answered? Should they be closed?

请先登录,再进行评论。

类别

Help CenterFile Exchange 中查找有关 Octave 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by