How to smooth the matlab plot to get the desired plot shape?
2 次查看(过去 30 天)
显示 更早的评论
Is there a way to change figure one to figure 2 (like the lines I draw in red and black color) without changing the values of y1 and y2? Please help.
Figure 1:
Figure 2:
Below is my code
clear all; close all; clc;
x= [0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1];
y1 = [0 0.0833 0.1583 0.2167 0.1500 0.3250 0.3750 0.3000 0.5917 0.3750 0.5000];
y2= [ 0 0 0.0167 0.0750 0.1000 0.0917 0.1167 0.1583 0.1083 0.2000 0.1833];
figure
plot (x,y1,'o')
hold on
plot (x,y2,'o')
Xi = 0:0.005:1;
Yi = pchip(x,y1,Xi);
Yi_spline = spline(x,y1,Xi);
h(1) = plot(Xi,Yi,'-','color',lines(1));
h(2) = plot(Xi, Yi_spline, '--', 'color', lines(1));
Yj = pchip(x,y2,Xi);
Yj_spline = spline(x, y2, Xi);
h(3) = plot(Xi,Yj,'-','color',[0.85, 0.325, 0.098]);
h(4) = plot(Xi,Yj_spline,'--','color',[0.85, 0.325, 0.098]);
legend(h, "Yi pchip", "Yi spline", "Yj pchip", "Yj spline", "location", "NW")
0 个评论
采纳的回答
Angelo Yeo
2023-7-24
I'm not sure about your intention. But the easiest way to smooth signals is moving average. See the doc below for more information about moving average.
https://www.mathworks.com/help/releases/R2023a/matlab/ref/movmean.html
x= [0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1];
y1 = [0 0.0833 0.1583 0.2167 0.1500 0.3250 0.3750 0.3000 0.5917 0.3750 0.5000];
y2= [ 0 0 0.0167 0.0750 0.1000 0.0917 0.1167 0.1583 0.1083 0.2000 0.1833];
figure
plot (x,y1,'o')
hold on
plot (x,y2,'o')
dt = 0.005;
Xi = 0:dt:1;
Yi = pchip(x,y1,Xi);
Yi_spline = spline(x,y1,Xi);
h(1) = plot(Xi,Yi,'-','color',lines(1));
h(2) = plot(Xi, Yi_spline, '--', 'color', lines(1));
Yj = pchip(x,y2,Xi);
Yj_spline = spline(x, y2, Xi);
h(3) = plot(Xi,Yj,'-','color',[0.85, 0.325, 0.098]);
h(4) = plot(Xi,Yj_spline,'--','color',[0.85, 0.325, 0.098]);
%% Smoothing
Yi_smooth = movmean(Yi_spline, 100);
Yj_smooth = movmean(Yj_spline, 100);
h(5) = plot(Xi, Yi_smooth, 'r','linewidth',2);
h(6) = plot(Xi, Yj_smooth, 'k','linewidth',2);
legend(h, "Yi pchip", "Yi spline", "Yj pchip", "Yj spline", "Yi smoothed", "Yj smoothed", "location", "NW")
4 个评论
Angelo Yeo
2023-7-24
Anyways, if you insist that the resultant curve should pass (0, 0), you can think of something like curve fitting for a quadratic polynomial without a bias term.
clear; close all; clc;
x= [0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1];
y1 = [0 0.0833 0.1583 0.2167 0.1500 0.3250 0.3750 0.3000 0.5917 0.3750 0.5000];
y2= [ 0 0 0.0167 0.0750 0.1000 0.0917 0.1167 0.1583 0.1083 0.2000 0.1833];
figure
plot (x,y1,'o')
hold on
plot (x,y2,'o')
dt = 0.005;
Xi = 0:dt:1;
Yi = pchip(x,y1,Xi);
Yi_spline = spline(x,y1,Xi);
h(1) = plot(Xi,Yi,'-','color',lines(1));
h(2) = plot(Xi, Yi_spline, '--', 'color', lines(1));
Yj = pchip(x,y2,Xi);
Yj_spline = spline(x, y2, Xi);
h(3) = plot(Xi,Yj,'-','color',[0.85, 0.325, 0.098]);
h(4) = plot(Xi,Yj_spline,'--','color',[0.85, 0.325, 0.098]);
legend(h, "Yi pchip", "Yi spline", "Yj pchip", "Yj spline", "location", "NW")
%% Fitting a quadratic curve
% Set up fittype and options.
[xData, yData] = prepareCurveData( Xi, Yi_spline );
ft = fittype( 'p1*x^2+p2*x', 'independent', 'x');
opts = fitoptions( 'Method', 'NonlinearLeastSquares' );
opts.StartPoint = [0, 0];
Yi_fit = fit( xData, yData, ft, opts );
[xData, yData] = prepareCurveData( Xi, Yj_spline );
ft = fittype( 'p1*x^2+p2*x', 'independent', 'x');
opts = fitoptions( 'Method', 'NonlinearLeastSquares' );
opts.StartPoint = [0, 0];
Yj_fit = fit( xData, yData, ft, opts );
h(5) = plot(Xi, Yi_fit.p1*Xi.^2 + Yi_fit.p2*Xi,'r','linewidth', 2);
h(6) = plot(Xi, Yj_fit.p1*Xi.^2 + Yj_fit.p2*Xi,'k','linewidth', 2);
legend(h, "Yi pchip", "Yi spline", "Yj pchip", "Yj spline", "Yi smoothed", "Yj smoothed", "location", "NW")
更多回答(0 个)
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Smoothing 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!