Multiple Input Multiple Output Gaussian Regression Model
65 次查看(过去 30 天)
显示 更早的评论
Is there any Multiple Input Multiple Output Gaussian Regression Model function in matlab?
Or, should i estasblish it myself?
0 个评论
回答(1 个)
Ayush
2023-7-25
Yes, MATLAB provides a function called fitgmdist that can be used to create a Multiple Input Multiple Output (MIMO) Gaussian regression model. This function is part of the Statistics and Machine Learning Toolbox.
Here's an example of how you can use fitgmdist to create a MIMO Gaussian regression model:
% Generate random data for demonstration
X = randn(100, 2); % Input variables
Y = X(:, 1) + 2*X(:, 2) + randn(100, 1); % Output variables
% Fit MIMO Gaussian regression model
numComponents = 2; % Specify the desired number of Gaussian components as an integer
model = fitgmdist(X, numComponents);
% Predict using the trained model
X_new = randn(10, 2); % New input data for prediction
Y_pred = posterior(model, X_new); % Predict the output variables
% Display the predicted output
disp(Y_pred);
Hope it helps!
2 个评论
Ayush
2023-7-26
You're welcome! Yes, you are correct that fitgmdist is a clustering method in MATLAB. It is used to fit a Gaussian mixture model to a dataset.
Regarding your question, if you are looking for a MIMO (Multiple Input Multiple Output) regression function similar to fitrgp in MATLAB, you can consider using the fitrsvm function. fitrsvm is used for training Support Vector Machine (SVM) regression models, which can handle multiple input and output variables.
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Gaussian Process Regression 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!