Hi Kyle,
I understand that you want to know the difference between "centralized" and "decentralized" learning strategies in Reinforcement Learning.
In MATLAB, the terms "centralized" and "decentralized" refer to different learning strategies for agent groups. Let's explore the differences between these two strategies:
1. Decentralized Training:
- In decentralized training, each agent collects its own set of experiences during the episodes and learns independently from those experiences.
- Agents maintain their own critics (value functions) and policies, which are updated based on their own experiences.
- There is no sharing of experiences or learning updates between agents.
- This approach is suitable when agents have distinct roles or objectives and should learn independently without coordination.
2. Centralized Training:
- In centralized training, agents share the collected experiences and learn from them together.
- All agents within a specific agent group (as defined by `AgentGroups`) share the same critic (value function) and policy.
- The critic is updated based on the collective experiences of all agents in the group, allowing them to learn from a shared knowledge base.
- Policies are shared among agents to promote coordination and collaboration.
- This approach is useful when agents need to coordinate their actions and learn from a common perspective, such as in cooperative tasks or when there is a need for centralized decision-making.
'AgentGroups' and 'LearningStrategy' must be used together to specify whether agent groups learn in a centralized manner or decentralized manner.
For example, you can use the following command to configure training for three agent groups with different learning strategies. The agents with indices [1,2] and [3,5] learn in a centralized manner, while agent 4 learns in a decentralized manner.
trainOpts = rlMultiAgentTrainingOptions(AgentGroups={[1,2],4,[3,5]}, ...
LearningStrategy=["centralized","decentralized","centralized"])
The paradigm of CTDE (centralized training and decentralized execution) is indeed related to the concept of centralized training in multi-agent RL. CTDE refers to training agents in a centralized manner, where they share a common critic and policy, but during execution or deployment, agents act independently without communication or coordination.
When to use centralized or decentralized training depends on the problem and the desired behavior of the agents. If coordination and collaboration are essential, centralized training can be beneficial. On the other hand, if agents have distinct roles or should act independently, decentralized training is more appropriate.
Please refer the following documentation of 'rlmultiagenttrainingoptions' to learn more about the usage of 'centralized' and 'decentralized' learning strategies.
I Hope this information was helpful.