How do I curve fit the data set

7 次查看(过去 30 天)
Hello all,
I'm facing difficulty in fitting the data.
The red ones are from the data set, and I want to fit that as like blue one (Experimental Data). How can I do that. I have also attached the data set for your reference.
Thank You.
  2 个评论
Sam Chak
Sam Chak 2023-7-29
What is the mathematical function of the blue curve? Is it a skewed normal distribution function?
Can you also suggest some candidate functions for fitting into the red data? Look up some Kernel functions.
Red data seems to have discontinuities at multiple intervals. Is it acceptable to have a piecewise function to fit the data?
Prajwal Magadi
Prajwal Magadi 2023-7-29
The blue curve is also a data set from an experimental obervation.
The red data is from the simulation.
And I have no idea of the function type of blue data.

请先登录,再进行评论。

采纳的回答

Sam Chak
Sam Chak 2023-7-29
Not sure if this is what your want. But you can try finding the best math function to fit.
data = load('curve_fit.mat');
x = data.theta_degree';
y = data.x';
skewEqn = 'a/(sqrt(2*pi))*exp(- b*(x - c)^2)*((1/2)*(1 + erf(e*(x - c)/sqrt(2)))) + d';
fo = fitoptions('Method', 'NonlinearLeastSquares',...
'Lower', [ 0, 0, 5, 0, 0.1],... % {a, b, c, d, e}
'Upper', [100, 1, 20, 10, 1.0],...
'StartPoint', [50 0.5 10 5 0.5]);
ft = fittype(skewEqn, 'options', fo);
[yfit, gof] = fit(x, y, ft)
yfit =
General model: yfit(x) = a/(sqrt(2*pi))*exp(- b*(x - c)^2)*((1/2)*(1 + erf(e*(x - c)/sqrt(2) ))) + d Coefficients (with 95% confidence bounds): a = 85.15 (84.38, 85.93) b = 0.003494 (0.003423, 0.003564) c = 7.162 (7.116, 7.209) d = 2.461 (2.241, 2.681) e = 0.3845 (0.3752, 0.3937)
gof = struct with fields:
sse: 9.7227e+04 rsquare: 0.9063 dfe: 9995 adjrsquare: 0.9062 rmse: 3.1189
plot(yfit, x, y)
grid on, xlabel('\theta'), ylabel('x')
legend('Data', 'Fitted Skew Dist Fcn')

更多回答(1 个)

Alex Sha
Alex Sha 2023-7-29
@Prajwal Magadi, one more function:
Sum Squared Error (SSE): 75571.6557870726
Root of Mean Square Error (RMSE): 2.74902993412354
Correlation Coef. (R): 0.962878352853849
R-Square: 0.927134722394541
Parameter Best Estimate
--------- -------------
y0 3.57509887406416
a 10210313.7484567
xc 17.1109591760412
w1 18.7010167618592
w2 -1.38399464317597
w3 -1.49504622174935
  3 个评论
Alex Sha
Alex Sha 2023-7-29
Hi, your data chart looks like peak-type function chart, so just try some typical peak functions, "Asym2Sig" function, shown above, gives more better outcomes.
Sam Chak
Sam Chak 2023-7-29
Hi @Alex Sha, thanks for sharing the information about the Asymmetric Double Sigmoidal function. I don't have Origin Pro, and I have never seen many of those functions before.

请先登录,再进行评论。

类别

Help CenterFile Exchange 中查找有关 Least Squares 的更多信息

产品


版本

R2023a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by