I want to plot Isocline i.e want plot (x,y) when system contains step function .

13 次查看(过去 30 天)
% Parameters
r =0.1; % Define the value of r
k = 50; % Define the value of k
a =0.01; % Define the value of a
e = 0.5; % Define the value of e
m = 0.05; % Define the value of m
F = 1; % Define the value of F
%s =0.1; % Define the value of s
w = 0.1; % Define the value of w
b = 0.001; % Define the value of b
M = 50; % Define the value of M
s =0.1; % Define the value of sx
% Initial conditions
x0 =2; % Define the initial value of x
y0 =1; % Define the initial value of y
initial_conditions = [x0; y0];
% Time span for simulation
tspan = [0, 100]; % Define the time span (e.g., [0, 10])
% Solve the system of differential equations
[t, y] = ode45(@(t, y) kkk(t, y, r, k, a, e, m, F, s, w, b, M, x), tspan, initial_conditions);
Unrecognized function or variable 'x'.

Error in solution>@(t,y)kkk(t,y,r,k,a,e,m,F,s,w,b,M,x) (line 20)
[t, y] = ode45(@(t, y) kkk(t, y, r, k, a, e, m, F, s, w, b, M, x), tspan, initial_conditions);

Error in odearguments (line 92)
f0 = ode(t0,y0,args{:}); % ODE15I sets args{1} to yp0.

Error in ode45 (line 107)
odearguments(odeIsFuncHandle,odeTreatAsMFile, solver_name, ode, tspan, y0, options, varargin);
% Extract the solution
x_sol = y(:, 1);
y_sol = y(:, 2);
function dydt = kkk(t,x,y, r, k, a, e, m, F, s, w, b, M)
x = y(1);
u = isocline_input(x, F, s, w, b, M);
dxdt = r * x * (1 - x / k) - a * x * y / (1 + q * u * M);
dydt = (e * a * x * y) / (1 + q * u * M) - m * y;
dydt = [dxdt; dydt];
end
function u = isocline_input(x, F,w, b, M, s)
pi0 = (w * F) / (s * (w + b * M));
pi1 = F * (w + b * M) / (s * w);
if x <= pi0
u = 0;
elseif x >= pi1
u = 1;
else
u = (s*x) / (s*x + F) + w * (s*x - F) / (b * (s*x + F) * M);
end
end
I want to plot (x,y) where is my fault please help
  7 个评论
mks
mks 2023-8-1
编辑:Walter Roberson 2023-8-1
% Parameters
r =0.1; % Define the value of r
k = 50; % Define the value of k
a =0.01; % Define the value of a
e = 0.5; % Define the value of e
m = 0.05; % Define the value of m
F = 1; % Define the value of F
%s =0.1; % Define the value of s
w = 0.1; % Define the value of w
b = 0.001; % Define the value of b
M = 50; % Define the value of M
s =0.1; % Define the value of sx
% Initial conditions
x0 =2; % Define the initial value of x
y0 =1; % Define the initial value of y
initial_conditions = [x0; y0];
% Time span for simulation
tspan = [0, 100]; % Define the time span (e.g., [0, 10])
% Solve the system of differential equations
[t, y] = ode45(@(t, state) kkk(t,state,r, k, a, e, m, F, s, w, b, M), tspan, initial_conditions);
x = state(1); y = state(2);
% [t, y] = ode45(@(t, state) kkk(t, state, r, k, a, e, m, F, s, w, b, M),
% Extract the solution
x_sol = y(:, 1);
y_sol = y(:, 2);
function dydt = kkk(t,x,y, r, k, a, e, m, F, s, w, b, M)
x = y(1);
u = isocline_input(x, F, s, w, b, M);
dxdt = r * x * (1 - x / k) - a * x * y / (1 + q * u * M);
dydt = (e * a * x * y) / (1 + q * u * M) - m * y;
dydt = [dxdt; dydt];
end
function u = isocline_input(x, F,w, b, M, s)
pi0 = (w * F) / (s * (w + b * M));
pi1 = F * (w + b * M) / (s * w);
if x <= pi0
u = 0;
elseif x >= pi1
u = 1;
else
u = (s*x) / (s*x + F) + w * (s*x - F) / (b * (s*x + F) * M);
end
end
sir, please see and help . I have tired

请先登录,再进行评论。

回答(1 个)

Walter Roberson
Walter Roberson 2023-8-1
移动:Walter Roberson 2023-8-1
Your code needs q but you did not define any q, so I had to pick SOME value for q in order to debug.
You need to change the definition of q to something appropriate for your situation.
% Parameters
r =0.1; % Define the value of r
k = 50; % Define the value of k
a =0.01; % Define the value of a
e = 0.5; % Define the value of e
m = 0.05; % Define the value of m
F = 1; % Define the value of F
%s =0.1; % Define the value of s
w = 0.1; % Define the value of w
b = 0.001; % Define the value of b
M = 50; % Define the value of M
s =0.1; % Define the value of sx
%user's code does not define any q, but we need a value of it to debug
rng(655321)
q = rand() * 10 %define the value of q
q = 3.1402
% Initial conditions
x0 =2; % Define the initial value of x
y0 =1; % Define the initial value of y
initial_conditions = [x0; y0];
% Time span for simulation
tspan = [0, 100]; % Define the time span (e.g., [0, 10])
% Solve the system of differential equations
[t, y] = ode45(@(t, state) kkk(t, state, r, k, a, e, m, F, s, w, b, M, q), tspan, initial_conditions);
% Extract the solution
x_sol = y(:, 1);
y_sol = y(:, 2);
subplot(2,1,1); plot(t, x_sol); title('x');
subplot(2,1,2); plot(t, y_sol); title('y');
function dydt = kkk(t, state, r, k, a, e, m, F, s, w, b, M, q)
x = state(1);
y = state(2);
u = isocline_input(x, F, s, w, b, M);
dxdt = r * x * (1 - x / k) - a * x * y / (1 + q * u * M);
dydt = (e * a * x * y) / (1 + q * u * M) - m * y;
dydt = [dxdt; dydt];
end
function u = isocline_input(x, F, s, w, b, M)
pi0 = (w * F) / (s * (w + b * M));
pi1 = F * (w + b * M) / (s * w);
if x <= pi0
u = 0;
elseif x >= pi1
u = 1;
else
u = (s*x) / (s*x + F) + w * (s*x - F) / (b * (s*x + F) * M);
end
end
  2 个评论
mks
mks 2023-8-1
why are you maintion 'u' as isclinefun
Here u is an adaptive step function .Which is contained in our system. My paper says that
1.when q=0.02,F=1
x=0:50;y=0:20,The system has an equilibrium point.
2.when q=0.03,F=1.714
x=0:50;y=0:20,The system has three equilibrium points
3.when q=0.02,F=1.8
x=0:50;y=0:20,The system has an equilibrium point.
4.when q=0.02,F=1.37
x=0:50;y=0:20,The system has an equilibrium point
5.
when q=0.03,F=1.613
x=0:50;y=0:20,The system have two equilibrium points
Give me suggetions how i can draw this plot(x,y)
I actually find the equilibrium points for choice of q and alternative resource F
Sam Chak
Sam Chak 2023-8-1
What exactly do you mean by "u is an Adaptive Step Function"? I tried searching the keywords, but they seem unrelated. A closer look shows that depends on the parameter that is defined through 3 static (non-dynamic) If-Else statements, making it looks like the scheduling approach.

请先登录,再进行评论。

类别

Help CenterFile Exchange 中查找有关 Numerical Integration and Differential Equations 的更多信息

标签

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by