Value for Function with 2nd order Central difference scheme

16 次查看(过去 30 天)
I am trying to write code for the above problem but getting wrong answer, Kindly help me to find the error in the code or suggest if there is any better alternate way to write code for the problem.
Right answer is 2.3563
c=1.5;
h=0.1;
x=(c-h):h:(c+h);
Fun=@(x) exp(x)-exp(-x)/2;
dFun=@(x) 2*exp(x)+2*exp(-x)/2;
F=Fun(x);
n=length(x);
dx= (F(:,end)-F(:,1))/(2*h)
dx = 4.6009

采纳的回答

Star Strider
Star Strider 2023-8-12
See First and Second Order Central Difference and add enclosing parentheses to the numerator of your implementation of the cosh function.
  2 个评论
VBBV
VBBV 2023-8-12
编辑:VBBV 2023-8-12
c=1.5;
h=0.1;
x=(c-h):h:(c+h);
Fun=@(x) (exp(x)-exp(-x))/2; % parenthesis
dFun=@(x) 2*(exp(x)+exp(-x))/2; % parenthesis
F=Fun(x);
n=length(x);
dx= (F(:,end)-F(:,1))/(2*h)
dx = 2.3563
Anu
Anu 2023-9-30
c = 1.5;
h = 0.1;
x = (c - h):h:(c + h);
Fun = @(x) (exp(x) - exp(-x)) / 2;
F = Fun(x);
n = length(x);
dx = (F(3) - F(1)) / (2 * h); % Corrected calculation of derivative at x=c

请先登录,再进行评论。

更多回答(1 个)

Anu
Anu 2023-9-30
  • c is the central point.
  • h is the step size.
  • x is a vector of values around c.
  • Fun is the function you want to calculate the derivative for.
  • F is the function values at the points in x.
  • dx calculates the derivative at the central point c using finite differences.

类别

Help CenterFile Exchange 中查找有关 Matrix Computations 的更多信息

产品

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by