The value of 'ValidationData' is invalid. Duplicate table variable name: 'input'. error during neural network training

7 次查看(过去 30 天)
I want to train an autoencoder that copies the input image.
I used augmentedImageDatastore for image resizing, then combined two augmentedImageDatastore to use as input and responses using the 'combine' function for the autoencoder.
However, If i run the code below, I see the error message:
The value of 'ValidationData' is invalid. Duplicate table variable name: 'input'.
I checked the 'combine' function for 'ImageDatastore' work well but I am not sure why it is not work for 'augmentedImageDatastore'.
Thank you for your help.
digitDatasetPath = fullfile("my path");
imds = imageDatastore(digitDatasetPath, ...
IncludeSubfolders=true,LabelSource="foldernames");
imds.ReadSize = 1024;
imds = shuffle(imds);
[imdsTrain,imdsVal,imdsTest] = splitEachLabel(imds,0.95,0.025);
% Create augmented datastores for input and response
augmentedTrainInput = augmentedImageDatastore([224,224,3], imdsTrain);
augmentedTrainOutput = augmentedImageDatastore([224,224,3], imdsTrain);
augmentedValInput = augmentedImageDatastore([224,224,3], imdsVal);
augmentedValOutput = augmentedImageDatastore([224,224,3], imdsVal);
augmentedTestInput = augmentedImageDatastore([224,224,3], imdsTest);
augmentedTestOutput = augmentedImageDatastore([224,224,3], imdsTest);
% Combine the augmented datastores for input and response
dsTrain = combine(augmentedTrainInput, augmentedTrainOutput);
dsVal = combine(augmentedValInput, augmentedValOutput);
dsTest = combine(augmentedTestInput, augmentedTestOutput);
% Define the network layers
imageLayer = imageInputLayer([224,224,3]);
encodingLayers = [ ...
convolution2dLayer(3,8,Padding="same"), ...
reluLayer, ...
maxPooling2dLayer(2,Padding="same",Stride=2), ...
convolution2dLayer(3,16,Padding="same"), ...
reluLayer, ...
maxPooling2dLayer(2,Padding="same",Stride=2), ...
convolution2dLayer(3,32,Padding="same"), ...
reluLayer, ...
maxPooling2dLayer(2,Padding="same",Stride=2)];
decodingLayers = [ ...
transposedConv2dLayer(2,32,Stride=2), ...
reluLayer, ...
transposedConv2dLayer(2,16,Stride=2), ...
reluLayer, ...
transposedConv2dLayer(2,8,Stride=2), ...
reluLayer, ...
convolution2dLayer(1,3,Padding="same"), ...
clippedReluLayer(1.0), ...
regressionLayer];
layers = [imageLayer,encodingLayers,decodingLayers];
options = trainingOptions("adam", ...
MaxEpochs=50, ...
MiniBatchSize=imds.ReadSize, ...
ValidationData=dsVal, ...
ValidationPatience=5, ...
Plots="training-progress", ...
OutputNetwork="best-validation-loss", ...
ExecutionEnvironment="multi-gpu", ...
DispatchInBackground=true,...
Verbose=true);
net = trainNetwork(dsTrain,layers,options);
modelDateTime = string(datetime("now",Format="yyyy-MM-dd-HH-mm-ss"));
save("trainedImageToImageRegressionNet-"+modelDateTime+".mat","net");
ypred = predict(net,dsTest);
testBatch = preview(dsTest);
idx = 1;
y = ypred(:,:,:,idx);
x = testBatch{idx,1};
ref = testBatch{idx,2};
montage({x,y});

采纳的回答

Joss Knight
Joss Knight 2023-9-13
augmentedImageDatastore returns a table so cannot be trivially combined. You should first transform it to convert it into a cell array of just the input values.
>> amds = augmentedImageDatastore([224,224,3],digitDatastore);
>> read(amds)
ans =
128×2 table
input response
_______________ ________
{224×224 uint8} 0
{224×224 uint8} 0
{224×224 uint8} 0
{224×224 uint8} 0
{224×224 uint8} 0
{224×224 uint8} 0
{224×224 uint8} 0
{224×224 uint8} 0
: :
Display all 128 rows.
>> amds = transform(augmentedImageDatastore([224,224,3],digitDatastore), @(t)t.input);
>> read(amds)
ans =
128×1 cell array
{224×224 uint8}
{224×224 uint8}
{224×224 uint8}
{224×224 uint8}
{224×224 uint8}
{224×224 uint8}
{224×224 uint8}
{224×224 uint8}
{224×224 uint8}
{224×224 uint8}
{224×224 uint8}
:

更多回答(0 个)

类别

Help CenterFile Exchange 中查找有关 Image Data Workflows 的更多信息

产品


版本

R2023a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by