calculate the normal for a plane passing through more than three points
36 次查看(过去 30 天)
显示 更早的评论
Hi! I have a plane passing through three points (triangular plane) and from which I determine the normal.
P = [ 0.034488 0.036484 0.006912; ...
0.019104 0.055041 0.047894; ...
-0.008596 0.123650 0.033786];
N = cross(P(1,:) - P(2,:), P(3,:) - P(2,:));
N = N/norm(N);
Is it possible to do the same thing with a circular plane ('V1_in')?
- If it is not possible to do this, how can I create the matrix equal to 'P' using the 'V1_in' plane?
0 个评论
采纳的回答
Bruno Luong
2023-9-29
load('V1_in.mat')
[~,~,V]=svd( V_1-mean(V_1));
N=V(:,3)
1 个评论
Bruno Luong
2023-9-29
% Check againts other method for 3 points
P = [ 0.034488 0.036484 0.006912; ...
0.019104 0.055041 0.047894; ...
-0.008596 0.123650 0.033786];
N = cross(P(1,:) - P(2,:), P(3,:) - P(2,:));
N = N/norm(N)
[~,~,V]=svd( P-mean(P));
N=V(:,3)% opposite sign, which is arbitrary choice for a 2D plane
更多回答(3 个)
Torsten
2023-9-29
编辑:Torsten
2023-9-29
If the points in V1_in.mat all lie in a common plane, you can arbitrarily pick three points and define these points as P.
If the points are only "approximately" in a common plane, you have to determine this plane via regression (like @Bruno Luong did).
0 个评论
Matthew Blomquist
2023-9-29
Hi Alberto,
If you think of the circular plane as a collection of points with coordinates (x, y, z), you can create a bunch of "triangular planes" by selecting any three coordinates to create a triangle. If all of the coordinates lie in the same plane, computing the normal of any triangular plane will be the same as computing the normal of the circular plane.
So, you can use the same code, but substitute three points from the circular plane (in V1_in) to your P matrix. Also, I often use the functions "patch" and "quiver3" to help visualize the normals.
Hope that helps!
0 个评论
Matt J
2023-9-30
编辑:Matt J
2023-9-30
Use planarFit() from this FEX package,
fitObj=planarFit(V_1')
fitObj =
planarFit with properties:
normal: [0.2147 -0.1801 0.9599]
distance: 82.5216
[hL,hD]=plot(fitObj); %Visualize the fit
legend([hL,hD],'Plane fit', 'XYZ samples', 'Location','northoutside','FontSize',15);
axis padded;
view(-70,15);drawnow
0 个评论
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Data Distribution Plots 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!