Error in FFT calculation
12 次查看(过去 30 天)
显示 更早的评论
Why the FFT value shows higher value in the cut signal when compared to whole signal, it should be opposite right?
close all
clear all
clc
load("allSignals.mat");
Fs = 50e6; % Sampling frequency
T = 1/Fs; % Sampling period
L = 7500; % change as required
t = (0:L-1)*T; % Time vector
X = allSignals(1,:);
plot(t,X)
title("Signal ")
xlabel("t ")
ylabel("X(t)")
% fft
Y = fft(X);
P2 = abs(Y/L);
P1 = P2(1:L/2+1);
P1(2:end-1) = 2*P1(2:end-1);
f = Fs*(0:(L/2))/L;
plot(f,P1)
title("Single-Sided Amplitude Spectrum of X(t)")
xlabel("f (Hz)")
ylabel("|P1(f)|")
figure ; % after cut
X1 = allSignals(1,500:1100);
L1 = length(X1);
Y1 = fft(X1);
P21 = abs(Y1/L1);
P11 = P21(1:L1/2+1);
P11(2:end-1) = 2*P11(2:end-1);
f1 = Fs*(0:(L1/2))/L1;
plot(f1,P11)
title("Single-Sided Amplitude Spectrum of X(t)")
xlabel("f (Hz)")
ylabel("|P1(f)|")
0 个评论
采纳的回答
Star Strider
2023-10-3
The value for ‘L’ is 7500 and for ‘L1’ is 601.
If you change:
P21 = abs(Y1/L1);
to
P21 = abs(Y1/L);
you will get the expected result (magnitude of about 40 rather than about 500).
load("allSignals.mat");
Fs = 50e6; % Sampling frequency
T = 1/Fs; % Sampling period
L = 7500; % change as required
t = (0:L-1)*T; % Time vector
X = allSignals(1,:);
plot(t,X)
title("Signal ")
xlabel("t ")
ylabel("X(t)")
% fft
Y = fft(X);
L = length(X) % <— ADDED
P2 = abs(Y/L);
P1 = P2(1:L/2+1);
P1(2:end-1) = 2*P1(2:end-1);
f = Fs*(0:(L/2))/L;
plot(f,P1)
title("Single-Sided Amplitude Spectrum of X(t)")
xlabel("f (Hz)")
ylabel("|P1(f)|")
figure ; % after cut
X1 = allSignals(1,500:1100);
L1 = length(X1);
Y1 = fft(X1);
% P21 = abs(Y1/L1);
P21 = abs(Y1/L); % <— CHANGED
P11 = P21(1:L1/2+1);
P11(2:end-1) = 2*P11(2:end-1);
f1 = Fs*(0:(L1/2))/L1;
plot(f1,P11)
title("Single-Sided Amplitude Spectrum of X(t)")
xlabel("f (Hz)")
ylabel("|P1(f)|")
.
2 个评论
Star Strider
2023-10-3
Zero-padding is appropriate.
It would be better to use this:
L = length(X1);
NFFT = 2^nextpow2(L);
Y1 = fft(X1,NFFT);
or better yet, this:
Y1 = fft(X1(:).*hann(L),NFFT);
since the window function corrects for the fft being finite, providing a more accurate result, and a power-of-2 fft length significantly improves its efficiency. Zero-padding it also improves the frequency resolution.
.
更多回答(0 个)
另请参阅
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!


