Shuffle matrix based on column elements
3 次查看(过去 30 天)
显示 更早的评论
EK
2023-10-7
Hi,
I have matrices like in the file attached below. The 4 columns log for stimuli representation in time. The rows are time and the columns are events. The first column logs stimuli id in time. (No stimulus =0, stimulus : 1 2 3 4 5 or 6) The second column logs the stimulus presentation time and its duration (0= No stimulus, 2=Stimulus); column 3 logs duration and ID of each trial. Trial 1 ==1; Trial trial 2 ==2; etc . I need to shuffle trials Ids (column3). Can anyone help with it?
2 个评论
采纳的回答
Voss
2023-10-8
Here's one way:
data = readmatrix('logfile_example-30-09-23.xlsx')
data = 1820×4
0 1 1 1
0 1 1 2
0 1 1 3
0 1 1 4
0 1 1 5
0 1 1 6
0 1 1 7
0 1 1 8
0 1 1 9
0 1 1 10
[trial_idx,trial_id] = findgroups(data(:,3));
n_trials = numel(trial_id);
order = randperm(n_trials)
order = 1×10
4 9 3 2 1 6 10 8 7 5
result = [];
for ii = 1:n_trials
result = [result; data(trial_idx == order(ii),:)];
end
disp(result);
0 1 4 547
0 1 4 548
0 1 4 549
0 1 4 550
0 1 4 551
0 1 4 552
0 1 4 553
0 1 4 554
0 1 4 555
0 1 4 556
0 1 4 557
0 1 4 558
0 1 4 559
0 1 4 560
0 1 4 561
0 1 4 562
0 1 4 563
0 1 4 564
0 1 4 565
0 1 4 566
0 1 4 567
0 1 4 568
0 1 4 569
0 1 4 570
0 1 4 571
0 1 4 572
0 1 4 573
0 1 4 574
0 1 4 575
0 1 4 576
0 1 4 577
0 1 4 578
0 1 4 579
0 1 4 580
0 1 4 581
0 1 4 582
0 1 4 583
0 1 4 584
0 1 4 585
0 1 4 586
0 1 4 587
0 1 4 588
0 1 4 589
0 1 4 590
0 1 4 591
0 1 4 592
0 1 4 593
0 1 4 594
0 1 4 595
0 1 4 596
0 1 4 597
0 1 4 598
0 1 4 599
0 1 4 600
0 1 4 601
0 1 4 602
0 1 4 603
0 1 4 604
0 1 4 605
0 1 4 606
0 1 4 607
0 1 4 608
0 1 4 609
0 1 4 610
0 1 4 611
0 1 4 612
0 1 4 613
0 1 4 614
0 1 4 615
0 1 4 616
2 2 4 617
2 2 4 618
2 2 4 619
2 2 4 620
2 2 4 621
2 2 4 622
2 2 4 623
2 2 4 624
2 2 4 625
2 2 4 626
2 2 4 627
2 2 4 628
2 2 4 629
2 2 4 630
2 2 4 631
2 2 4 632
2 2 4 633
2 2 4 634
2 2 4 635
2 2 4 636
2 2 4 637
2 2 4 638
2 2 4 639
2 2 4 640
2 2 4 641
2 2 4 642
2 2 4 643
2 2 4 644
2 2 4 645
2 2 4 646
2 2 4 647
2 2 4 648
2 2 4 649
2 2 4 650
2 2 4 651
2 2 4 652
2 2 4 653
2 2 4 654
2 2 4 655
2 2 4 656
2 2 4 657
2 2 4 658
0 3 4 659
0 3 4 660
0 3 4 661
0 3 4 662
0 3 4 663
0 3 4 664
0 3 4 665
0 3 4 666
0 3 4 667
0 3 4 668
0 3 4 669
0 3 4 670
0 3 4 671
0 3 4 672
0 3 4 673
0 3 4 674
0 3 4 675
0 3 4 676
0 3 4 677
0 3 4 678
0 3 4 679
0 3 4 680
0 3 4 681
0 3 4 682
0 3 4 683
0 3 4 684
0 3 4 685
0 3 4 686
0 3 4 687
0 3 4 688
0 3 4 689
0 3 4 690
0 3 4 691
0 3 4 692
0 3 4 693
0 3 4 694
0 3 4 695
0 3 4 696
0 3 4 697
0 3 4 698
0 3 4 699
0 3 4 700
0 3 4 701
0 3 4 702
0 3 4 703
0 3 4 704
0 3 4 705
0 3 4 706
0 3 4 707
0 3 4 708
0 3 4 709
0 3 4 710
0 3 4 711
0 3 4 712
0 3 4 713
0 3 4 714
0 3 4 715
0 3 4 716
0 3 4 717
0 3 4 718
0 3 4 719
0 3 4 720
0 3 4 721
0 3 4 722
0 3 4 723
0 3 4 724
0 3 4 725
0 3 4 726
0 3 4 727
0 3 4 728
0 1 9 1457
0 1 9 1458
0 1 9 1459
0 1 9 1460
0 1 9 1461
0 1 9 1462
0 1 9 1463
0 1 9 1464
0 1 9 1465
0 1 9 1466
0 1 9 1467
0 1 9 1468
0 1 9 1469
0 1 9 1470
0 1 9 1471
0 1 9 1472
0 1 9 1473
0 1 9 1474
0 1 9 1475
0 1 9 1476
0 1 9 1477
0 1 9 1478
0 1 9 1479
0 1 9 1480
0 1 9 1481
0 1 9 1482
0 1 9 1483
0 1 9 1484
0 1 9 1485
0 1 9 1486
0 1 9 1487
0 1 9 1488
0 1 9 1489
0 1 9 1490
0 1 9 1491
0 1 9 1492
0 1 9 1493
0 1 9 1494
0 1 9 1495
0 1 9 1496
0 1 9 1497
0 1 9 1498
0 1 9 1499
0 1 9 1500
0 1 9 1501
0 1 9 1502
0 1 9 1503
0 1 9 1504
0 1 9 1505
0 1 9 1506
0 1 9 1507
0 1 9 1508
0 1 9 1509
0 1 9 1510
0 1 9 1511
0 1 9 1512
0 1 9 1513
0 1 9 1514
0 1 9 1515
0 1 9 1516
0 1 9 1517
0 1 9 1518
0 1 9 1519
0 1 9 1520
0 1 9 1521
0 1 9 1522
0 1 9 1523
0 1 9 1524
0 1 9 1525
0 1 9 1526
2 2 9 1527
2 2 9 1528
2 2 9 1529
2 2 9 1530
2 2 9 1531
2 2 9 1532
2 2 9 1533
2 2 9 1534
2 2 9 1535
2 2 9 1536
2 2 9 1537
2 2 9 1538
2 2 9 1539
2 2 9 1540
2 2 9 1541
2 2 9 1542
2 2 9 1543
2 2 9 1544
2 2 9 1545
2 2 9 1546
2 2 9 1547
2 2 9 1548
2 2 9 1549
2 2 9 1550
2 2 9 1551
2 2 9 1552
2 2 9 1553
2 2 9 1554
2 2 9 1555
2 2 9 1556
2 2 9 1557
2 2 9 1558
2 2 9 1559
2 2 9 1560
2 2 9 1561
2 2 9 1562
2 2 9 1563
2 2 9 1564
2 2 9 1565
2 2 9 1566
2 2 9 1567
2 2 9 1568
0 3 9 1569
0 3 9 1570
0 3 9 1571
0 3 9 1572
0 3 9 1573
0 3 9 1574
0 3 9 1575
0 3 9 1576
0 3 9 1577
0 3 9 1578
0 3 9 1579
0 3 9 1580
0 3 9 1581
0 3 9 1582
0 3 9 1583
0 3 9 1584
0 3 9 1585
0 3 9 1586
0 3 9 1587
0 3 9 1588
0 3 9 1589
0 3 9 1590
0 3 9 1591
0 3 9 1592
0 3 9 1593
0 3 9 1594
0 3 9 1595
0 3 9 1596
0 3 9 1597
0 3 9 1598
0 3 9 1599
0 3 9 1600
0 3 9 1601
0 3 9 1602
0 3 9 1603
0 3 9 1604
0 3 9 1605
0 3 9 1606
0 3 9 1607
0 3 9 1608
0 3 9 1609
0 3 9 1610
0 3 9 1611
0 3 9 1612
0 3 9 1613
0 3 9 1614
0 3 9 1615
0 3 9 1616
0 3 9 1617
0 3 9 1618
0 3 9 1619
0 3 9 1620
0 3 9 1621
0 3 9 1622
0 3 9 1623
0 3 9 1624
0 3 9 1625
0 3 9 1626
0 3 9 1627
0 3 9 1628
0 3 9 1629
0 3 9 1630
0 3 9 1631
0 3 9 1632
0 3 9 1633
0 3 9 1634
0 3 9 1635
0 3 9 1636
0 3 9 1637
0 3 9 1638
0 1 3 365
0 1 3 366
0 1 3 367
0 1 3 368
0 1 3 369
0 1 3 370
0 1 3 371
0 1 3 372
0 1 3 373
0 1 3 374
0 1 3 375
0 1 3 376
0 1 3 377
0 1 3 378
0 1 3 379
0 1 3 380
0 1 3 381
0 1 3 382
0 1 3 383
0 1 3 384
0 1 3 385
0 1 3 386
0 1 3 387
0 1 3 388
0 1 3 389
0 1 3 390
0 1 3 391
0 1 3 392
0 1 3 393
0 1 3 394
0 1 3 395
0 1 3 396
0 1 3 397
0 1 3 398
0 1 3 399
0 1 3 400
0 1 3 401
0 1 3 402
0 1 3 403
0 1 3 404
0 1 3 405
0 1 3 406
0 1 3 407
0 1 3 408
0 1 3 409
0 1 3 410
0 1 3 411
0 1 3 412
0 1 3 413
0 1 3 414
0 1 3 415
0 1 3 416
0 1 3 417
0 1 3 418
0 1 3 419
0 1 3 420
0 1 3 421
0 1 3 422
0 1 3 423
0 1 3 424
0 1 3 425
0 1 3 426
0 1 3 427
0 1 3 428
0 1 3 429
0 1 3 430
0 1 3 431
0 1 3 432
0 1 3 433
0 1 3 434
1 2 3 435
1 2 3 436
1 2 3 437
1 2 3 438
1 2 3 439
1 2 3 440
1 2 3 441
1 2 3 442
1 2 3 443
1 2 3 444
1 2 3 445
1 2 3 446
1 2 3 447
1 2 3 448
1 2 3 449
1 2 3 450
1 2 3 451
1 2 3 452
1 2 3 453
1 2 3 454
1 2 3 455
1 2 3 456
1 2 3 457
1 2 3 458
1 2 3 459
1 2 3 460
1 2 3 461
1 2 3 462
1 2 3 463
1 2 3 464
1 2 3 465
1 2 3 466
1 2 3 467
1 2 3 468
1 2 3 469
1 2 3 470
1 2 3 471
1 2 3 472
1 2 3 473
1 2 3 474
1 2 3 475
1 2 3 476
0 3 3 477
0 3 3 478
0 3 3 479
0 3 3 480
0 3 3 481
0 3 3 482
0 3 3 483
0 3 3 484
0 3 3 485
0 3 3 486
0 3 3 487
0 3 3 488
0 3 3 489
0 3 3 490
0 3 3 491
0 3 3 492
0 3 3 493
0 3 3 494
0 3 3 495
0 3 3 496
0 3 3 497
0 3 3 498
0 3 3 499
0 3 3 500
0 3 3 501
0 3 3 502
0 3 3 503
0 3 3 504
0 3 3 505
0 3 3 506
0 3 3 507
0 3 3 508
0 3 3 509
0 3 3 510
0 3 3 511
0 3 3 512
0 3 3 513
0 3 3 514
0 3 3 515
0 3 3 516
0 3 3 517
0 3 3 518
0 3 3 519
0 3 3 520
0 3 3 521
0 3 3 522
0 3 3 523
0 3 3 524
0 3 3 525
0 3 3 526
0 3 3 527
0 3 3 528
0 3 3 529
0 3 3 530
0 3 3 531
0 3 3 532
0 3 3 533
0 3 3 534
0 3 3 535
0 3 3 536
0 3 3 537
0 3 3 538
0 3 3 539
0 3 3 540
0 3 3 541
0 3 3 542
0 3 3 543
0 3 3 544
0 3 3 545
0 3 3 546
0 1 2 183
0 1 2 184
0 1 2 185
0 1 2 186
0 1 2 187
0 1 2 188
0 1 2 189
0 1 2 190
0 1 2 191
0 1 2 192
0 1 2 193
0 1 2 194
0 1 2 195
0 1 2 196
0 1 2 197
0 1 2 198
0 1 2 199
0 1 2 200
0 1 2 201
0 1 2 202
0 1 2 203
0 1 2 204
0 1 2 205
0 1 2 206
0 1 2 207
0 1 2 208
0 1 2 209
0 1 2 210
0 1 2 211
0 1 2 212
0 1 2 213
0 1 2 214
0 1 2 215
0 1 2 216
0 1 2 217
0 1 2 218
0 1 2 219
0 1 2 220
0 1 2 221
0 1 2 222
0 1 2 223
0 1 2 224
0 1 2 225
0 1 2 226
0 1 2 227
0 1 2 228
0 1 2 229
0 1 2 230
0 1 2 231
0 1 2 232
0 1 2 233
0 1 2 234
0 1 2 235
0 1 2 236
0 1 2 237
0 1 2 238
0 1 2 239
0 1 2 240
0 1 2 241
0 1 2 242
0 1 2 243
0 1 2 244
0 1 2 245
0 1 2 246
0 1 2 247
0 1 2 248
0 1 2 249
0 1 2 250
0 1 2 251
0 1 2 252
1 2 2 253
1 2 2 254
1 2 2 255
1 2 2 256
1 2 2 257
1 2 2 258
1 2 2 259
1 2 2 260
1 2 2 261
1 2 2 262
1 2 2 263
1 2 2 264
1 2 2 265
1 2 2 266
1 2 2 267
1 2 2 268
1 2 2 269
1 2 2 270
1 2 2 271
1 2 2 272
1 2 2 273
1 2 2 274
1 2 2 275
1 2 2 276
1 2 2 277
1 2 2 278
1 2 2 279
1 2 2 280
1 2 2 281
1 2 2 282
1 2 2 283
1 2 2 284
1 2 2 285
1 2 2 286
1 2 2 287
1 2 2 288
1 2 2 289
1 2 2 290
1 2 2 291
1 2 2 292
1 2 2 293
1 2 2 294
0 3 2 295
0 3 2 296
0 3 2 297
0 3 2 298
0 3 2 299
0 3 2 300
0 3 2 301
0 3 2 302
0 3 2 303
0 3 2 304
0 3 2 305
0 3 2 306
0 3 2 307
0 3 2 308
0 3 2 309
0 3 2 310
0 3 2 311
0 3 2 312
0 3 2 313
0 3 2 314
0 3 2 315
0 3 2 316
0 3 2 317
0 3 2 318
0 3 2 319
0 3 2 320
0 3 2 321
0 3 2 322
0 3 2 323
0 3 2 324
0 3 2 325
0 3 2 326
0 3 2 327
0 3 2 328
0 3 2 329
0 3 2 330
0 3 2 331
0 3 2 332
0 3 2 333
0 3 2 334
0 3 2 335
0 3 2 336
0 3 2 337
0 3 2 338
0 3 2 339
0 3 2 340
0 3 2 341
0 3 2 342
0 3 2 343
0 3 2 344
0 3 2 345
0 3 2 346
0 3 2 347
0 3 2 348
0 3 2 349
0 3 2 350
0 3 2 351
0 3 2 352
0 3 2 353
0 3 2 354
0 3 2 355
0 3 2 356
0 3 2 357
0 3 2 358
0 3 2 359
0 3 2 360
0 3 2 361
0 3 2 362
0 3 2 363
0 3 2 364
0 1 1 1
0 1 1 2
0 1 1 3
0 1 1 4
0 1 1 5
0 1 1 6
0 1 1 7
0 1 1 8
0 1 1 9
0 1 1 10
0 1 1 11
0 1 1 12
0 1 1 13
0 1 1 14
0 1 1 15
0 1 1 16
0 1 1 17
0 1 1 18
0 1 1 19
0 1 1 20
0 1 1 21
0 1 1 22
0 1 1 23
0 1 1 24
0 1 1 25
0 1 1 26
0 1 1 27
0 1 1 28
0 1 1 29
0 1 1 30
0 1 1 31
0 1 1 32
0 1 1 33
0 1 1 34
0 1 1 35
0 1 1 36
0 1 1 37
0 1 1 38
0 1 1 39
0 1 1 40
0 1 1 41
0 1 1 42
0 1 1 43
0 1 1 44
0 1 1 45
0 1 1 46
0 1 1 47
0 1 1 48
0 1 1 49
0 1 1 50
0 1 1 51
0 1 1 52
0 1 1 53
0 1 1 54
0 1 1 55
0 1 1 56
0 1 1 57
0 1 1 58
0 1 1 59
0 1 1 60
0 1 1 61
0 1 1 62
0 1 1 63
0 1 1 64
0 1 1 65
0 1 1 66
0 1 1 67
0 1 1 68
0 1 1 69
0 1 1 70
2 2 1 71
2 2 1 72
2 2 1 73
2 2 1 74
2 2 1 75
2 2 1 76
2 2 1 77
2 2 1 78
2 2 1 79
2 2 1 80
2 2 1 81
2 2 1 82
2 2 1 83
2 2 1 84
2 2 1 85
2 2 1 86
2 2 1 87
2 2 1 88
2 2 1 89
2 2 1 90
2 2 1 91
2 2 1 92
2 2 1 93
2 2 1 94
2 2 1 95
2 2 1 96
2 2 1 97
2 2 1 98
2 2 1 99
2 2 1 100
2 2 1 101
2 2 1 102
2 2 1 103
2 2 1 104
2 2 1 105
2 2 1 106
2 2 1 107
2 2 1 108
2 2 1 109
2 2 1 110
2 2 1 111
2 2 1 112
0 3 1 113
0 3 1 114
0 3 1 115
0 3 1 116
0 3 1 117
0 3 1 118
0 3 1 119
0 3 1 120
0 3 1 121
0 3 1 122
0 3 1 123
0 3 1 124
0 3 1 125
0 3 1 126
0 3 1 127
0 3 1 128
0 3 1 129
0 3 1 130
0 3 1 131
0 3 1 132
0 3 1 133
0 3 1 134
0 3 1 135
0 3 1 136
0 3 1 137
0 3 1 138
0 3 1 139
0 3 1 140
0 3 1 141
0 3 1 142
0 3 1 143
0 3 1 144
0 3 1 145
0 3 1 146
0 3 1 147
0 3 1 148
0 3 1 149
0 3 1 150
0 3 1 151
0 3 1 152
0 3 1 153
0 3 1 154
0 3 1 155
0 3 1 156
0 3 1 157
0 3 1 158
0 3 1 159
0 3 1 160
0 3 1 161
0 3 1 162
0 3 1 163
0 3 1 164
0 3 1 165
0 3 1 166
0 3 1 167
0 3 1 168
0 3 1 169
0 3 1 170
0 3 1 171
0 3 1 172
0 3 1 173
0 3 1 174
0 3 1 175
0 3 1 176
0 3 1 177
0 3 1 178
0 3 1 179
0 3 1 180
0 3 1 181
0 3 1 182
0 1 6 911
0 1 6 912
0 1 6 913
0 1 6 914
0 1 6 915
0 1 6 916
0 1 6 917
0 1 6 918
0 1 6 919
0 1 6 920
0 1 6 921
0 1 6 922
0 1 6 923
0 1 6 924
0 1 6 925
0 1 6 926
0 1 6 927
0 1 6 928
0 1 6 929
0 1 6 930
0 1 6 931
0 1 6 932
0 1 6 933
0 1 6 934
0 1 6 935
0 1 6 936
0 1 6 937
0 1 6 938
0 1 6 939
0 1 6 940
0 1 6 941
0 1 6 942
0 1 6 943
0 1 6 944
0 1 6 945
0 1 6 946
0 1 6 947
0 1 6 948
0 1 6 949
0 1 6 950
0 1 6 951
0 1 6 952
0 1 6 953
0 1 6 954
0 1 6 955
0 1 6 956
0 1 6 957
0 1 6 958
0 1 6 959
0 1 6 960
0 1 6 961
0 1 6 962
0 1 6 963
0 1 6 964
0 1 6 965
0 1 6 966
0 1 6 967
0 1 6 968
0 1 6 969
0 1 6 970
0 1 6 971
0 1 6 972
0 1 6 973
0 1 6 974
0 1 6 975
0 1 6 976
0 1 6 977
0 1 6 978
0 1 6 979
0 1 6 980
2 2 6 981
2 2 6 982
2 2 6 983
2 2 6 984
2 2 6 985
2 2 6 986
2 2 6 987
2 2 6 988
2 2 6 989
2 2 6 990
2 2 6 991
2 2 6 992
2 2 6 993
2 2 6 994
2 2 6 995
2 2 6 996
2 2 6 997
2 2 6 998
2 2 6 999
2 2 6 1000
2 2 6 1001
2 2 6 1002
2 2 6 1003
2 2 6 1004
2 2 6 1005
2 2 6 1006
2 2 6 1007
2 2 6 1008
2 2 6 1009
2 2 6 1010
2 2 6 1011
2 2 6 1012
2 2 6 1013
2 2 6 1014
2 2 6 1015
2 2 6 1016
2 2 6 1017
2 2 6 1018
2 2 6 1019
2 2 6 1020
2 2 6 1021
2 2 6 1022
0 3 6 1023
0 3 6 1024
0 3 6 1025
0 3 6 1026
0 3 6 1027
0 3 6 1028
0 3 6 1029
0 3 6 1030
0 3 6 1031
0 3 6 1032
0 3 6 1033
0 3 6 1034
0 3 6 1035
0 3 6 1036
0 3 6 1037
0 3 6 1038
0 3 6 1039
0 3 6 1040
0 3 6 1041
0 3 6 1042
0 3 6 1043
0 3 6 1044
0 3 6 1045
0 3 6 1046
0 3 6 1047
0 3 6 1048
0 3 6 1049
0 3 6 1050
0 3 6 1051
0 3 6 1052
0 3 6 1053
0 3 6 1054
0 3 6 1055
0 3 6 1056
0 3 6 1057
0 3 6 1058
0 3 6 1059
0 3 6 1060
0 3 6 1061
0 3 6 1062
0 3 6 1063
0 3 6 1064
0 3 6 1065
0 3 6 1066
0 3 6 1067
0 3 6 1068
0 3 6 1069
0 3 6 1070
0 3 6 1071
0 3 6 1072
0 3 6 1073
0 3 6 1074
0 3 6 1075
0 3 6 1076
0 3 6 1077
0 3 6 1078
0 3 6 1079
0 3 6 1080
0 3 6 1081
0 3 6 1082
0 3 6 1083
0 3 6 1084
0 3 6 1085
0 3 6 1086
0 3 6 1087
0 3 6 1088
0 3 6 1089
0 3 6 1090
0 3 6 1091
0 3 6 1092
0 1 10 1639
0 1 10 1640
0 1 10 1641
0 1 10 1642
0 1 10 1643
0 1 10 1644
0 1 10 1645
0 1 10 1646
0 1 10 1647
0 1 10 1648
0 1 10 1649
0 1 10 1650
0 1 10 1651
0 1 10 1652
0 1 10 1653
0 1 10 1654
0 1 10 1655
0 1 10 1656
0 1 10 1657
0 1 10 1658
0 1 10 1659
0 1 10 1660
0 1 10 1661
0 1 10 1662
0 1 10 1663
0 1 10 1664
0 1 10 1665
0 1 10 1666
0 1 10 1667
0 1 10 1668
0 1 10 1669
0 1 10 1670
0 1 10 1671
0 1 10 1672
0 1 10 1673
0 1 10 1674
0 1 10 1675
0 1 10 1676
0 1 10 1677
0 1 10 1678
0 1 10 1679
0 1 10 1680
0 1 10 1681
0 1 10 1682
0 1 10 1683
0 1 10 1684
0 1 10 1685
0 1 10 1686
0 1 10 1687
0 1 10 1688
0 1 10 1689
0 1 10 1690
0 1 10 1691
0 1 10 1692
0 1 10 1693
0 1 10 1694
0 1 10 1695
0 1 10 1696
0 1 10 1697
0 1 10 1698
0 1 10 1699
0 1 10 1700
0 1 10 1701
0 1 10 1702
0 1 10 1703
0 1 10 1704
0 1 10 1705
0 1 10 1706
0 1 10 1707
0 1 10 1708
1 2 10 1709
1 2 10 1710
1 2 10 1711
1 2 10 1712
1 2 10 1713
1 2 10 1714
1 2 10 1715
1 2 10 1716
1 2 10 1717
1 2 10 1718
1 2 10 1719
1 2 10 1720
1 2 10 1721
1 2 10 1722
1 2 10 1723
1 2 10 1724
1 2 10 1725
1 2 10 1726
1 2 10 1727
1 2 10 1728
1 2 10 1729
1 2 10 1730
1 2 10 1731
1 2 10 1732
1 2 10 1733
1 2 10 1734
1 2 10 1735
1 2 10 1736
1 2 10 1737
1 2 10 1738
1 2 10 1739
1 2 10 1740
1 2 10 1741
1 2 10 1742
1 2 10 1743
1 2 10 1744
1 2 10 1745
1 2 10 1746
1 2 10 1747
1 2 10 1748
1 2 10 1749
1 2 10 1750
0 3 10 1751
0 3 10 1752
0 3 10 1753
0 3 10 1754
0 3 10 1755
0 3 10 1756
0 3 10 1757
0 3 10 1758
0 3 10 1759
0 3 10 1760
0 3 10 1761
0 3 10 1762
0 3 10 1763
0 3 10 1764
0 3 10 1765
0 3 10 1766
0 3 10 1767
0 3 10 1768
0 3 10 1769
0 3 10 1770
0 3...
更多回答(1 个)
Walter Roberson
2023-10-7
sortrows specifying column 3 to sort on. The resulting matrix will group together all of the entries with the same trial-ID
5 个评论
the cyclist
2023-10-7
编辑:the cyclist
2023-10-7
@EK wrote "shuffle", not "sort", so I suspected that they might mean randomization, within each trial. But they may have meant sorting by trial.
Bruno Luong
2023-10-8
"shuffle matrix by trials Ids (column3)."
And in which way column3 matters in randomizing?
Dyuman Joshi
2023-10-8
@EK, Bruno's question was that in what way randomizing column 3 matters? What is the idea/logic behind randomizing?
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Entering Commands 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!发生错误
由于页面发生更改,无法完成操作。请重新加载页面以查看其更新后的状态。
您也可以从以下列表中选择网站:
如何获得最佳网站性能
选择中国网站(中文或英文)以获得最佳网站性能。其他 MathWorks 国家/地区网站并未针对您所在位置的访问进行优化。
美洲
- América Latina (Español)
- Canada (English)
- United States (English)
欧洲
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom(English)
亚太
- Australia (English)
- India (English)
- New Zealand (English)
- 中国
- 日本Japanese (日本語)
- 한국Korean (한국어)