セマンティックセグメ​ンテーションを使った​転移学習と、その学習​データをもとにテスト​するにはどうすればよ​いですか?

3 次查看(过去 30 天)
takai
takai 2023-10-12
编辑: Naga 2023-10-18
コンクリートののひび割れ画像をセマンティックセグメンテーションを用い、学習し、テストさせ、ひび割れがある個所、ない箇所を色分けするスクリプトが知りたい。

回答(1 个)

Naga
Naga 2023-10-18
编辑:Naga 2023-10-18
Hi 大暉 高井,
I understand you want to use semantic segmentation to color-code areas with cracks and areas without cracks in concrete images, please follow the below steps to achieve that:
  1. MATLAB provides pre-trained models for semantic segmentation, such as DeepLabv3+ or SegNet, load one of these pre-trained models using the deeplabv3plusLayers or segnetLayers functions.
  2. Depending on the model you choose replace the last layers of the pre-trained model with new layers for your specific task.
  3. Modify the number of output classes to match your requirement (e.g., 2 classes for crack and non-crack).
  4. Use the trainNetwork function to train the customized model using the training dataset.
  5. Fine tune the parameters such as the number of epochs, learning rate, and mini-batch size.
  6. Use the trained model to predict the segmentation masks for the testing dataset.
For more understanding about semantic segmentation please refer to the following documentations:
  1. Semantic segmentation: https://www.mathworks.com/help/vision/semantic-segmentation.html?s_tid=CRUX_lftnav
  2. Examples: https://www.mathworks.com/help/vision/examples.html?category=semantic-segmentation&s_tid=CRUX_topnav
Hope this helps!

类别

Help CenterFile Exchange 中查找有关 Genetic Algorithm 的更多信息

产品


版本

R2022b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!