How can I simplify this expression using "abs" function?

15 次查看(过去 30 天)
  8 个评论
Walter Roberson
Walter Roberson 2023-11-20
I think in the Wolfram output that the # stand in for the variable whose value has to be found to make the expression zero

请先登录,再进行评论。

回答(2 个)

Star Strider
Star Strider 2023-11-20
This seems to work —
syms n k
Expr = 7/6 * symsum((2*n^3 + 3*n^2 + n - 2*k^3 - 3*k^3 - k)-(k*(k+1)*(2*k+1))/6, k, 1, n-1)
Expr = 
Expr = simplify(Expr, 500)
Expr = 
.
  5 个评论
Star Strider
Star Strider 2023-11-20
编辑:Star Strider 2023-11-20
Edited —
syms n k
Expr = symsum(abs((2*n^3 + 3*n^2 + n - 2*k^3 - 3*k^2 - k)/6-(k*(k+1)*(2*k+1))/6), k, 1, n-1)
Expr = 
Expr = simplify(Expr, 400)
Expr = 
.

请先登录,再进行评论。


Torsten
Torsten 2023-11-20
编辑:Torsten 2023-11-20
You must determine the value for k0 where the expression
2*n^3 + 3*n^2 + n - 2*k^3 - 3*k^2 - k - k*(k+1)*(2*k+1)
changes sign from positive to negative. Then you can add
1/6*(2*n^3 + 3*n^2 + n - 2*k^3 - 3*k^2 - k - k*(k+1)*(2*k+1))
from k = 1 to k = floor(k0) and add
-1/6*(2*n^3 + 3*n^2 + n - 2*k^3 - 3*k^2 - k - k*(k+1)*(2*k+1)))
from k = floor(k0)+1 to k = n-1.
syms n k
p = simplify(2*n^3 + 3*n^2 + n - 2*k^3 - 3*k^2 - k - k*(k+1)*(2*k+1))
p = 
s = solve(p,k,'MaxDegree',3)
s = 
result = simplify(1/6*symsum(2*n^3 + 3*n^2 + n - 2*k^3 - 3*k^2 - k - k*(k+1)*(2*k+1),k,1,floor(s(1)))-...
1/6*symsum(2*n^3 + 3*n^2 + n - 2*k^3 - 3*k^2 - k - k*(k+1)*(2*k+1),k,floor(s(1))+1,n-1))
result = 
subs(result,n,13)
ans = 
6444
k = 1:12;
n = 13;
expr = 1/6*abs(2*n^3 + 3*n^2 + n - 2*k.^3 - 3*k.^2 - k - k.*(k+1).*(2*k+1))
expr = 1×12
817 809 791 759 709 637 539 411 249 49 193 481
sum(expr)
ans = 6444

类别

Help CenterFile Exchange 中查找有关 Mathematics 的更多信息

标签

产品


版本

R2015a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by