Apply Machine Learning in wireless communication?

4 次查看(过去 30 天)
I am trying to apply machine learning to wireless communication. So I need to generate a BPSK sample data set in Matlab. Is there any special way to generate sample data?I need your help to start it just for a source-destination direct link. predicting the received data at the destination.

采纳的回答

Yash
Yash 2023-12-6
Hi Kasun,
You can generate a BPSK sample data set in MATLAB using the randi function. Here's an example code snippet to generate a BPSK signal with 1000 bits:
bits = randi([0 1], 1000, 1); % generate random bits
bpsk = 2*bits - 1; % BPSK modulation
This will generate a vector bpsk with values of either -1 or 1, representing the BPSK signal.
To simulate a source-destination direct link, you can add some noise to the signal using the awgn function. Here's an example code snippet:
snr = 10; % signal-to-noise ratio in dB
noisy_bpsk = awgn(bpsk, snr); % add noise to the signal
This will add Gaussian white noise to the bpsk signal with a signal-to-noise ratio of 10 dB, and store the result in noisy_bpsk.
To predict the received data at the destination, you can use machine learning algorithms such as neural networks or support vector machines. You will need to train your model on a set of known input-output pairs, and then use the trained model to predict the output for new input data.
You can read more about the 'randi' and 'awgn' functions here:
Hope this helps!
  2 个评论
Kasun Wickramarathna
Hi Yash ,
I need help to clarify my steps are correct or not.
  1. I generated data set as below as you mentioned.
clear all;close all;clc;
bits = randi([0 1], 1000, 1); % generate random bits
bpsk = 2*bits - 1; % BPSK modulation
snr = 10; % signal-to-noise ratio in dB
noisy_bpsk = awgn(bpsk, snr); % add noise to the signal
newdata = [bpsk ,noisy_bpsk];
writematrix(newdata, 'tx_rx_data.csv'); %Writing data to .csv file
Part of the data set.
2. Training the model with generated dataset.I used support vector machines.
%Prepare the dataset
tx_rx_data = readmatrix('tx_rx_data.csv');
%Assigning data to X and Y variables
X = tx_rx_data(:,1);
Y = tx_rx_data(:,2);
rand = randperm(10^2);%Generate random nums is equal to rows
%divide the data for traing and testing
Xtr = X(rand(1:length(rand)*0.8) ,:);% 80% for training
Ytr = Y(rand(1:length(rand)*0.8) ,:);% 80% for training
Xtest = X(rand(1:length(rand)*0.2) ,:);% 20% for testing
Ytest = Y(rand(1:length(rand)*0.2) ,:);% 20% for testing
model_tx_rx_data = fitcecoc(Xtr , Ytr); %used support vector machines
save model_tx_rx_data;%save the model
%Testing the model
result = predict(model_tx_rx_data , Xtest);
accuracy = (sum(result == Ytest)/length(Ytest))*100;
sp = sprintf("Test Accuracy = %0.2f" , accuracy);
disp(sp);
This shows very low accuracy.If I increse the number of bits , it says ,the system needs more memery.
3.Testing to new data.
bits = randi([0 1], 1000, 1); % generate random bits
bpsk = 2*bits - 1; % BPSK modulation
snr = 10; % signal-to-noise ratio in dB
noisy_bpsk = awgn(bpsk, snr); % add noise to the signal
rx_symbols = noisy_bpsk;
Where do I include the trained model to predict the received data.I think it is added after the decoder.Then I use the trained model as below ? I need to clarify this step correct or not.
decodedData = real(rx_symbols) >; %Decoder output
%Prepare the dataset for real data
TrainedmodelRx_data = readmatrix('tx_rx_data.csv');
%Assigning data to variable
TrainedmodelRx_data = Trainedmodel_data(:,2);
%use the trained model to predict the data at Rx
ML_predicted_receivedData = predict(TrainedmodelRx_data , decodedData);
%TrainedmodelRx_data - Output of the trained model
%decodedData - output from the decoder at Rx
Need help with this.
Thank you

请先登录,再进行评论。

更多回答(0 个)

类别

Help CenterFile Exchange 中查找有关 Link-Level Simulation 的更多信息

产品


版本

R2022a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by