- AccuracyMetric
- AUCMetric
- FScoreMetric
- PrecisionMetric
- RecallMetric
- RMSEMetric
calculate training coeffecient of determination r^2 and mean absolute error
6 次查看(过去 30 天)
显示 更早的评论
Hi everyone,I hope this message finds you well. I am currently working on a prediction task using LSTM, and I have successfully obtained the training RMSE using info in following codde
[net info] = trainNetwork(xtrain, ytrain, layers, options);
i have also obtained testing metrics using their formulas
Y = predict(net, xtest);
e = (ytest - Y);
rmse = mean(sqrt(mean((Y - ytest).^2)));
mae1 = mae(e);
Rsq1 = 1 - sum((ytest - Y).^2) / sum((ytest - mean(ytest)).^2);
mse = mean(mean((ytest - Y).^2));
However, I am curious to know if there is a straightforward way to retrieve additional training metrics such as R² and MAE for the LSTM model. Your insights and guidance on this matter would be greatly appreciated.
Thank you in advance for your time and assistance.
0 个评论
采纳的回答
Debraj Maji
2023-12-25
I understand that you are trying to retrieve additional training metrics for the aforementioned LSTM Model. As of 2023b the available metrics for tracking are:
One of the ways to track R-squared and MAE during training is by creating a custom Deep Learning Metric Object and specifying it in 'trainingOptions' under Metrics argument. The steps to create a Deep Learning Metric Object can be found here: https://in.mathworks.com/help/deeplearning/ug/define-custom-deep-learning-metric.html
For more info on options available during training you can refer to the following documentation:
I hope this resolves your query.
With regards,
Debraj.
更多回答(0 个)
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Statistics and Machine Learning Toolbox 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!