Solving a matrix equation with fixed point iteration method
5 次查看(过去 30 天)
显示 更早的评论
I want to solve the following equation for
where
I believe Equ.1 can be solved using fixed iteration method. The twist here is that the term itself have a self-consistent equation:
So, to solve Equ.1, I have to solve Equ.3 for and then put the value of in Equ.2 and calculate and finally put in Equ.1 to solve it.
In Equ.1, And H and are 2-by-2 matrices given in below code. is identity matrix and E is a scalar parameter.
I'm working on this code. The loop for is converging well, but the loop for is very slow for certain u values, and it never converges for others. Any tips to speed up convergence or alternative solution methods?
clear; clc;
% parameters of equations:
E = 1;
n = 0.1;
u = 0.2;
% parameters of this script:
Nk = 1000; % number of points for integrating over kx and ky
max_iter = 2000; % # of maximum iterations
convergence_threshold = 1e-6;
% k-points and limits
xmin = -2*pi/(3*sqrt(3));
xmax = 4*pi/(3*sqrt(3));
ymin = -2*pi/3;
ymax = 2*pi/3;
kxs = linspace(xmin,xmax,Nk);
dkx = kxs(2) - kxs(1);
kys = linspace(ymin,ymax,Nk);
dky = kys(2) - kys(1);
%%%%%%%%%%%%%%%%%%%%%%%% Calculation of Sigma_0 %%%%%%%%%%%%%%%%%%%%%%%%
Sigma_0 = (0.1 + 0.1i)*eye(2); % initial guess
for iter = 1:max_iter
% Calculation of integration in Sigma_0 (Equ.3) via sum:
G_0 = @(kx,ky) inv( E*eye(2) - H(kx,ky) - Sigma_0 );
integral_term_Equ3 = zeros(2);
parfor ikx = 1:Nk
qx = kxs(ikx);
for iky = 1:Nk
qy = kys(iky);
integral_term_Equ3 = integral_term_Equ3 + G_0(qx,qy) * dkx * dky;
end
end
%new value of Sigma_0 (Equ.3):
new_Sigma_0 = n * u * inv( eye(2) - 1/(4*pi^2) * integral_term_Equ3 * u);
diff = norm(new_Sigma_0 - Sigma_0); %difference
fprintf('G_0 Iteration: %d, Difference: %0.9f\n', iter, diff);
if diff < convergence_threshold
fprintf('G_0 converged after %d iterations\n', iter);
break;
end
Sigma_0 = new_Sigma_0; % update Solution
end
G_0 = @(kx,ky) inv( E*eye(2) - H(kx,ky) - Sigma_0 ); %the chosen G_0
%%%%%%%%%%%%%%%%%%%%%%%% Calculation of Sigma_x %%%%%%%%%%%%%%%%%%%%%%%%
Sigma_x = Sigma_0; %taking Sigma_0 as initial guess
for iter = 1:max_iter
% Calculating the integration in Sigma (Equ.1) via sum:
integral_term_Equ1 = zeros(2);
parfor ikx = 1:Nk
qx = kxs(ikx);
for iky = 1:Nk
qy = kys(iky);
integrant = G_0(qx,qy) * (Sigma_x - 1i*E*v_x(qx,qy)) * G_0(qx,qy)' + 1i*E/2 * (G_0(qx,qy)*v_x(qx,qy)*G_0(qx,qy) + G_0(qx,qy)'*v_x(qx,qy)*G_0(qx,qy)');
integral_term_Equ1 = integral_term_Equ1 + integrant * dkx * dky;
end
end
%new value of Sigma_x (Equ.1):
new_Sigma_x = -1/(4*pi^2*n) * Sigma_0 * integral_term_Equ1 * Sigma_0';
diff = norm(new_Sigma_x - Sigma_x); %difference
fprintf('G Iteration: %d, Difference: %0.9f\n', iter, diff);
if diff < convergence_threshold
fprintf('G converged after %d iterations\n', iter);
break;
end
Sigma_x = new_Sigma_x; % update Solution
end
%%%%%%%%%%%%%%%%%%%%%%%% H and v_x functions %%%%%%%%%%%%%%%%%%%%%%%%
function H = H(kx,ky)
J = 1;
D = 0.5;
S = 1;
a1 = [0,-1]';
a2 = [sqrt(3)/2,1/2]';
a3 = [-sqrt(3)/2,1/2]';
b1 = [sqrt(3)/2,-3/2]';
b2 = [sqrt(3)/2,3/2]';
b3 = [-sqrt(3),0]';
s0 = eye(2,2);
sx = [0,1; 1,0];
sy = [0, -1i; 1i, 0];
sz = [1, 0; 0, -1];
k = [kx,ky];
h0 = 3*J*S;
hx = -J*S*( cos(k*a1) + cos(k*a2) + cos(k*a3) );
hy = -J*S*( sin(k*a1) + sin(k*a2) + sin(k*a3) );
hz = 2*D*S*( sin(k*b1) + sin(k*b2) + sin(k*b3) );
H = s0*h0 + sx*hx + sy*hy + sz*hz;
end
function v_x = v_x(kx,ky)
J = 1;
D = 0.5;
S = 1;
sx = [0,1; 1,0];
sy = [0, -1i; 1i, 0];
sz = [1, 0; 0, -1];
dkx_hx = -J*S*((3^(1/2)*sin(ky/2 - (3^(1/2)*kx)/2))/2 - (3^(1/2)*sin(ky/2 + (3^(1/2)*kx)/2))/2);
dkx_hy = J*S*((3^(1/2)*cos(ky/2 - (3^(1/2)*kx)/2))/2 - (3^(1/2)*cos(ky/2 + (3^(1/2)*kx)/2))/2);
dkx_hz = 2*D*S*((3^(1/2)*cos((3*ky)/2 - (3^(1/2)*kx)/2))/2 - 3^(1/2)*cos(3^(1/2)*kx) + (3^(1/2)*cos((3*ky)/2 + (3^(1/2)*kx)/2))/2);
v_x = sx*dkx_hx + sy*dkx_hy + sz*dkx_hz;
end
The result of above code are:
G_0 Iteration: 1, Difference: 0.127690191
G_0 Iteration: 2, Difference: 0.001871435
G_0 Iteration: 3, Difference: 0.000038569
G_0 Iteration: 4, Difference: 0.000000739
G_0 converged after 4 iterations
G Iteration: 1, Difference: 0.046150821
G Iteration: 2, Difference: 0.050105083
G Iteration: 3, Difference: 0.050493792
G Iteration: 4, Difference: 0.050542706
G Iteration: 5, Difference: 0.050547627
G Iteration: 6, Difference: 0.050543314
G Iteration: 7, Difference: 0.050536343
G Iteration: 8, Difference: 0.050528515
G Iteration: 9, Difference: 0.050520402
G Iteration: 10, Difference: 0.050512195
G Iteration: 11, Difference: 0.050503958
G Iteration: 12, Difference: 0.050495711
G Iteration: 13, Difference: 0.050487461
G Iteration: 14, Difference: 0.050479212
G Iteration: 15, Difference: 0.050470964
G Iteration: 16, Difference: 0.050462717
G Iteration: 17, Difference: 0.050454471
G Iteration: 18, Difference: 0.050446226
G Iteration: 19, Difference: 0.050437983
G Iteration: 20, Difference: 0.050429741
G Iteration: 21, Difference: 0.050421501
G Iteration: 22, Difference: 0.050413262
G Iteration: 23, Difference: 0.050405024
G Iteration: 24, Difference: 0.050396788
G Iteration: 25, Difference: 0.050388553
G Iteration: 26, Difference: 0.050380319
G Iteration: 27, Difference: 0.050372087
G Iteration: 28, Difference: 0.050363856
G Iteration: 29, Difference: 0.050355626
G Iteration: 30, Difference: 0.050347398
G Iteration: 31, Difference: 0.050339171
G Iteration: 32, Difference: 0.050330945
G Iteration: 33, Difference: 0.050322721
G Iteration: 34, Difference: 0.050314498
G Iteration: 35, Difference: 0.050306276
G Iteration: 36, Difference: 0.050298056
G Iteration: 37, Difference: 0.050289837
G Iteration: 38, Difference: 0.050281619
G Iteration: 39, Difference: 0.050273403
G Iteration: 40, Difference: 0.050265188
G Iteration: 41, Difference: 0.050256975
G Iteration: 42, Difference: 0.050248762
G Iteration: 43, Difference: 0.050240552
G Iteration: 44, Difference: 0.050232342
G Iteration: 45, Difference: 0.050224134
G Iteration: 46, Difference: 0.050215927
G Iteration: 47, Difference: 0.050207721
G Iteration: 48, Difference: 0.050199517
G Iteration: 49, Difference: 0.050191315
G Iteration: 50, Difference: 0.050183113
G Iteration: 51, Difference: 0.050174913
G Iteration: 52, Difference: 0.050166714
G Iteration: 53, Difference: 0.050158517
G Iteration: 54, Difference: 0.050150321
G Iteration: 55, Difference: 0.050142126
G Iteration: 56, Difference: 0.050133932
G Iteration: 57, Difference: 0.050125740
G Iteration: 58, Difference: 0.050117549
G Iteration: 59, Difference: 0.050109360
G Iteration: 60, Difference: 0.050101172
G Iteration: 61, Difference: 0.050092985
G Iteration: 62, Difference: 0.050084800
0 个评论
采纳的回答
Torsten
2023-12-29
编辑:Torsten
2023-12-29
main()
function main
clear; clc;
format long
% parameters of equations:
E = 1;
n = 0.1;
u = 0.2;
% parameters of this script:
Nk = 300; % number of points for integrating over kx and ky
% k-points and limits
xmin = -2*pi/(3*sqrt(3));
xmax = 4*pi/(3*sqrt(3));
ymin = -2*pi/3;
ymax = 2*pi/3;
kxs = linspace(xmin,xmax,Nk);
dkx = kxs(2) - kxs(1);
kys = linspace(ymin,ymax,Nk);
dky = kys(2) - kys(1);
%%%%%%%%%%%%%%%%%%%%%%%% Calculation of Sigma_0 %%%%%%%%%%%%%%%%%%%%%%%%
Sigma_0 = (0.1 + 0.1i)*eye(2); % initial guess
sigma0 = [Sigma_0(:,1);Sigma_0(:,2)];
sigma0 = fsolve(@fun_Sigma0,sigma0,optimset('TolFun',1e-12,'TolX',1e-12));
Sigma_0 = [sigma0(1:2),sigma0(3:4)]
%%%%%%%%%%%%%%%%%%%%%%%% Calculation of Sigma_x %%%%%%%%%%%%%%%%%%%%%%%%
Sigma_x = Sigma_0;
sigmax = [Sigma_x(:,1);Sigma_x(:,2)];
sigmax = fsolve(@fun_Sigmax,sigmax,optimset('TolFun',1e-12,'TolX',1e-12));
Sigma_x = [sigmax(1:2),sigmax(3:4)]
function res = fun_Sigma0(sigma0)
Sigma_0 = [sigma0(1:2),sigma0(3:4)];
% Calculation of integration in Sigma_0 (Equ.3) via sum:
G_0 = @(kx,ky) inv( E*eye(2) - H(kx,ky) - Sigma_0 );
integral_term_Equ3 = zeros(2);
for ikx = 1:Nk
qx = kxs(ikx);
for iky = 1:Nk
qy = kys(iky);
integral_term_Equ3 = integral_term_Equ3 + G_0(qx,qy) * dkx * dky;
end
end
Res = Sigma_0 - n * u * inv( eye(2) - 1/(4*pi^2) * integral_term_Equ3 * u);
res = [Res(:,1);Res(:,2)];
end
function res = fun_Sigmax(sigmax)
Sigma_x = [sigmax(1:2),sigmax(3:4)];
% Calculation of integration in Sigma_0 (Equ.3) via sum:
G_0 = @(kx,ky) inv( E*eye(2) - H(kx,ky) - Sigma_0 );
integral_term_Equ1 = zeros(2);
for ikx = 1:Nk
qx = kxs(ikx);
for iky = 1:Nk
qy = kys(iky);
G_0_num = G_0(qx,qy);
v_x_num = v_x(qx,qy);
integrant = G_0_num * (Sigma_x - 1i*E*v_x_num) * G_0_num' + 1i*E/2 * (G_0_num*v_x_num*G_0_num + G_0_num'*v_x_num*G_0_num');
integral_term_Equ1 = integral_term_Equ1 + integrant * dkx * dky;
end
end
Res = Sigma_x - (-1/(4*pi^2*n) * Sigma_0 * integral_term_Equ1 * Sigma_0');
res = [Res(:,1);Res(:,2)];
end
%%%%%%%%%%%%%%%%%%%%%%%% H and v_x functions %%%%%%%%%%%%%%%%%%%%%%%%
function H = H(kx,ky)
J = 1;
D = 0.5;
S = 1;
a1 = [0,-1]';
a2 = [sqrt(3)/2,1/2]';
a3 = [-sqrt(3)/2,1/2]';
b1 = [sqrt(3)/2,-3/2]';
b2 = [sqrt(3)/2,3/2]';
b3 = [-sqrt(3),0]';
s0 = eye(2,2);
sx = [0,1; 1,0];
sy = [0, -1i; 1i, 0];
sz = [1, 0; 0, -1];
k = [kx,ky];
h0 = 3*J*S;
hx = -J*S*( cos(k*a1) + cos(k*a2) + cos(k*a3) );
hy = -J*S*( sin(k*a1) + sin(k*a2) + sin(k*a3) );
hz = 2*D*S*( sin(k*b1) + sin(k*b2) + sin(k*b3) );
H = s0*h0 + sx*hx + sy*hy + sz*hz;
end
function v_x = v_x(kx,ky)
J = 1;
D = 0.5;
S = 1;
sx = [0,1; 1,0];
sy = [0, -1i; 1i, 0];
sz = [1, 0; 0, -1];
dkx_hx = -J*S*((3^(1/2)*sin(ky/2 - (3^(1/2)*kx)/2))/2 - (3^(1/2)*sin(ky/2 + (3^(1/2)*kx)/2))/2);
dkx_hy = J*S*((3^(1/2)*cos(ky/2 - (3^(1/2)*kx)/2))/2 - (3^(1/2)*cos(ky/2 + (3^(1/2)*kx)/2))/2);
dkx_hz = 2*D*S*((3^(1/2)*cos((3*ky)/2 - (3^(1/2)*kx)/2))/2 - 3^(1/2)*cos(3^(1/2)*kx) + (3^(1/2)*cos((3*ky)/2 + (3^(1/2)*kx)/2))/2);
v_x = sx*dkx_hx + sy*dkx_hy + sz*dkx_hz;
end
end
15 个评论
Torsten
2024-1-16
编辑:Torsten
2024-1-16
I believe that if I could write a code that takes a lot of points near these points, we can achieve accurate integration.
That's exactly what an adaptive ODE integrator like ode45 does. If it didn't succeed, I doubt you will find a way to handle this problem with existing MATLAB codes.
Are you sure that the matrix G00 has no singularities in the domain of integration ?
更多回答(0 个)
另请参阅
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!