How do I solve this ODE system where there exists derivatives in both sides?
1 次查看(过去 30 天)
显示 更早的评论
The system of ODE is the following equation.
Second equation is no of a problem but first and the third one is the problematic for me. Because I can't get them in the form that is similar when using ode45. That is, I can't seperate the derivatives because and are coupled.
Any help is appreciated. Thanks!
0 个评论
采纳的回答
David Goodmanson
2024-1-6
编辑:David Goodmanson
2024-1-6
Hi Arda,
These two equations are of the form
p' Jxx - r' Jxz = f(...) where ... = p,q,r,J,J,M,M (a bunch of known stuff)
-p' Jxz + r' Jzz = g(...) where ... = a bunch of other known stuff
in matrix form this is
[Jxx -Jxz; -Jxz Jzz]*[p'; r'] = [f; g];
where the semicolons produce a 2x2 matrix and two 2x1 column vectors. This is solved by left divide.
[p'; r'] = [Jxx -Jxz; -Jxz Jzz]\[f; g]
which works fine for calculation, or if you prefer you can use the tedious longhand version
p' = (Jzz*f + Jxz*g) / (Jxx*Jzz - Jxz^2)
r' = (Jxz*f + Jxx*g) / (Jxx*Jzz - Jxz^2)
3 个评论
Sam Chak
2024-1-6
编辑:Sam Chak
2024-1-6
This is Euler's equations of rotational motion for a rigid body. Basically, David's approach allows the decoupling of the equations of motion into two separate state equations.
In MATLAB, the syntax to perform matrix left division may be given by:
J = [Jxx -Jxz;
-Jxz Jzz];
M = [Mx + fx;
Mz + fz];
dwdt(1:2) = J\M;
更多回答(1 个)
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Ordinary Differential Equations 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!