integral vs trapz vs sum

16 次查看(过去 30 天)
The result obtained from trapz() differs in sign compared to the approximation from integral() and the summation approach for the following integration (note that integration is taken over E). From the following code, I get:
1.7136 from integral(),
-1.7099 from trapz(),
1.7136 from sum().
Why trapz() sign is different?
clear; clc;
%----------------------------- some constants -----------------------------
kx = -2*pi/(3*sqrt(3));
ky = 1*pi/3;
T = 10;
J = 1;
D = 0.8;
S = 1;
eta = 0.01;
beta = 1/(0.0863*T);
s0 = eye(2);
sx = [0, 1; 1, 0];
sy = [0, -1i; 1i, 0];
sz = [1, 0; 0, -1];
h0 = 3 * J * S;
hx = -J * S * (cos(ky / 2 - (3^(1/2) * kx) / 2) + cos(ky / 2 + (3^(1/2) * kx) / 2) + cos(ky));
hy = -J * S * (sin(ky / 2 - (3^(1/2) * kx) / 2) + sin(ky / 2 + (3^(1/2) * kx) / 2) - sin(ky));
hz = -2 * D * S * (sin(3^(1/2) * kx) + sin((3 * ky) / 2 - (3^(1/2) * kx) / 2) - sin((3 * ky) / 2 + (3^(1/2) * kx) / 2));
H = s0*h0 + sx*hx + sy*hy + sz*hz;
dkx_hx = -J*S*((3^(1/2)*sin(ky/2 - (3^(1/2)*kx)/2))/2 - (3^(1/2)*sin(ky/2 + (3^(1/2)*kx)/2))/2);
dkx_hy = J*S*((3^(1/2)*cos(ky/2 - (3^(1/2)*kx)/2))/2 - (3^(1/2)*cos(ky/2 + (3^(1/2)*kx)/2))/2);
dkx_hz = 2*D*S*((3^(1/2)*cos((3*ky)/2 - (3^(1/2)*kx)/2))/2 - 3^(1/2)*cos(3^(1/2)*kx) + (3^(1/2)*cos((3*ky)/2 + (3^(1/2)*kx)/2))/2);
dky_hx = J*S*(sin(ky/2 - (3^(1/2)*kx)/2)/2 + sin(ky/2 + (3^(1/2)*kx)/2)/2 + sin(ky));
dky_hy = -J*S*(cos(ky/2 - (3^(1/2)*kx)/2)/2 + cos(ky/2 + (3^(1/2)*kx)/2)/2 - cos(ky));
dky_hz = -2*D*S*((3*cos((3*ky)/2 - (3^(1/2)*kx)/2))/2 - (3*cos((3*ky)/2 + (3^(1/2)*kx)/2))/2);
X = sx*dkx_hx + sy*dkx_hy + sz*dkx_hz;
Y = sx*dky_hx + sy*dky_hy + sz*dky_hz;
G0R = @(E) inv(E*s0 - H + 1i*eta*s0);
fE = @(E) 1/( exp(beta*E) - 1 );
%--------------------------------------------------------------------------
%function:
fun = @(E) real(trace(1/2*fE(E)*E^2*(G0R(E)*X*G0R(E)*Y*G0R(E) - G0R(E)*Y*G0R(E)*X*G0R(E)) + (1/2*fE(E)*E^2*(G0R(E)*X*G0R(E)*Y*G0R(E) - G0R(E)*Y*G0R(E)*X*G0R(E)))'));
funn = @(E) arrayfun( @(E)fun(E), E ); %arrayfun
%limits:
Emin = -10;
Emax = 30;
dE = 1e-4;
Es = Emin:dE:Emax;
%integration using integral()
I_int = integral(funn,Emin,Emax);
%integration using trapz()
funn_values = funn(Es);
[~,indx] = find(isnan(funn_values)); % replacing NaN with mean value
for idx = indx
funn_values(idx) = ( funn_values(idx-1)+funn_values(idx+1) )/2;
end
I_trapz = trapz(funn_values,Es);
%integration using sum()
I_sum = sum(funn_values(:))*dE;
I = [I_int, I_trapz, I_sum]
% output: [1.7136 -1.7099 1.7136]

采纳的回答

John D'Errico
John D'Errico 2024-1-29
SIMPLE. READ THE HELP.
help trapz
TRAPZ Trapezoidal numerical integration. Z = TRAPZ(Y) computes an approximation of the integral of Y via the trapezoidal method (with unit spacing). To compute the integral for spacing different from one, multiply Z by the spacing increment. For vectors, TRAPZ(Y) is the integral of Y. For matrices, TRAPZ(Y) is a row vector with the integral over each column. For N-D arrays, TRAPZ(Y) works across the first non-singleton dimension. Z = TRAPZ(X,Y) computes the integral of Y with respect to X using the trapezoidal method. X can be a scalar or a vector with the same length as the first non-singleton dimension in Y. TRAPZ operates along this dimension. If X is scalar, then TRAPZ(X,Y) is equivalent to X*TRAPZ(Y). Z = TRAPZ(X,Y,DIM) or TRAPZ(Y,DIM) integrates across dimension DIM of Y. The length of X must be the same as size(Y,DIM)). Example: Y = [0 1 2; 3 4 5] trapz(Y,1) trapz(Y,2) Class support for inputs X, Y: float: double, single See also SUM, CUMSUM, CUMTRAPZ, INTEGRAL. Documentation for trapz doc trapz Other uses of trapz codistributed/trapz gpuArray/trapz
So the call to trapz should have been
I_trapz = trapz(Es,funn_values);
Changing that,
kx = -2*pi/(3*sqrt(3));
ky = 1*pi/3;
T = 10;
J = 1;
D = 0.8;
S = 1;
eta = 0.01;
Emin = -10;
Emax = 30;
dE = 1e-4;
Es = Emin:dE:Emax;
NE = length(Es);
beta = 1/(0.0863*T);
s0 = eye(2);
sx = [0, 1; 1, 0];
sy = [0, -1i; 1i, 0];
sz = [1, 0; 0, -1];
h0 = 3 * J * S;
hx = -J * S * (cos(ky / 2 - (3^(1/2) * kx) / 2) + cos(ky / 2 + (3^(1/2) * kx) / 2) + cos(ky));
hy = -J * S * (sin(ky / 2 - (3^(1/2) * kx) / 2) + sin(ky / 2 + (3^(1/2) * kx) / 2) - sin(ky));
hz = -2 * D * S * (sin(3^(1/2) * kx) + sin((3 * ky) / 2 - (3^(1/2) * kx) / 2) - sin((3 * ky) / 2 + (3^(1/2) * kx) / 2));
H = s0*h0 + sx*hx + sy*hy + sz*hz;
dkx_hx = -J*S*((3^(1/2)*sin(ky/2 - (3^(1/2)*kx)/2))/2 - (3^(1/2)*sin(ky/2 + (3^(1/2)*kx)/2))/2);
dkx_hy = J*S*((3^(1/2)*cos(ky/2 - (3^(1/2)*kx)/2))/2 - (3^(1/2)*cos(ky/2 + (3^(1/2)*kx)/2))/2);
dkx_hz = 2*D*S*((3^(1/2)*cos((3*ky)/2 - (3^(1/2)*kx)/2))/2 - 3^(1/2)*cos(3^(1/2)*kx) + (3^(1/2)*cos((3*ky)/2 + (3^(1/2)*kx)/2))/2);
dky_hx = J*S*(sin(ky/2 - (3^(1/2)*kx)/2)/2 + sin(ky/2 + (3^(1/2)*kx)/2)/2 + sin(ky));
dky_hy = -J*S*(cos(ky/2 - (3^(1/2)*kx)/2)/2 + cos(ky/2 + (3^(1/2)*kx)/2)/2 - cos(ky));
dky_hz = -2*D*S*((3*cos((3*ky)/2 - (3^(1/2)*kx)/2))/2 - (3*cos((3*ky)/2 + (3^(1/2)*kx)/2))/2);
X = sx*dkx_hx + sy*dkx_hy + sz*dkx_hz;
Y = sx*dky_hx + sy*dky_hy + sz*dky_hz;
G0R = @(E) inv(E*s0 - H + 1i*eta*s0);
fE = @(E) 1/( exp(beta*E) - 1 );
%--------------------------------------------------------------------------
%function:
fun = @(E) real(trace(1/2*fE(E)*E^2*(G0R(E)*X*G0R(E)*Y*G0R(E) - G0R(E)*Y*G0R(E)*X*G0R(E)) + (1/2*fE(E)*E^2*(G0R(E)*X*G0R(E)*Y*G0R(E) - G0R(E)*Y*G0R(E)*X*G0R(E)))'));
funn = @(E) arrayfun( @(E)fun(E), E ); %arrayfun
%integration using integral()
I_int = integral(funn,Emin,Emax);
%integration using trapz()
funn_values = funn(Es);
[~,indx] = find(isnan(funn_values)); % replacing NaN with mean value
for idx = indx
funn_values(idx) = ( funn_values(idx-1)+funn_values(idx+1) )/2;
end
I_trapz = trapz(Es,funn_values);
%integration using sum()
I_sum = sum(funn_values(:))*dE;
I = [I_int, I_trapz, I_sum]
I = 1×3
1.7136 1.7136 1.7136
  2 个评论
Luqman Saleem
Luqman Saleem 2024-1-29
Lol. How did I miss that... I feel like an idiot now.
thank you very much for the reply.
John D'Errico
John D'Errico 2024-1-29
Lol. Honestly, I've tripped on it a few times in the past too. At least until you trip enough times that you no longer stub your big toe there.
Logically, if I were to write trapz, then if y is the first argument if called as trapz(y), then if you call it with TWO arguments, it SHOULD be trapz(y,x). SERIOUSLY, trapz is just begging for new users to trip over that. Sadly, I did not write trapz.

请先登录,再进行评论。

更多回答(0 个)

类别

Help CenterFile Exchange 中查找有关 Numerical Integration and Differentiation 的更多信息

产品


版本

R2023b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by