Index in position 1 exceeds array bounds. Index must not exceed 1.

16 次查看(过去 30 天)
Hello everyone,
I hope you are all doing well. I am using MATLAB to solve the differential equations. But I found the problem always happens when I increased the variables.
My codes for m.file and function please see below.
Many thanks for your help and supporting.
Best wishes,
Yu
clear; clc;
tic
% Parameters
g = 9.81;
ms = 17839000;
cs = 1.1029*10^6;
ct = 6.9515*10^7;
cp = 3.4079*10^6;
ch = 1.3*10^5;
ks = 6.6026*10^4;
kp = -3.0746*10^8;
kh = 4.470*10^6;
kt = 1.5944*10^10;
mt = 2254000; % Tower+RNA
m = 20093000;
Ip = 1.251*10^10; % platform inertia moment of pitch
It = 2.9359*10^9;
ma = 9.64*10^6; % Added mass for platform surge
mh = 2.480*10^7; % Added mass for platform heave
Ia = 1.16*10^10; % Added mass for platform pitch
hs = 14.94;
ht = 56.50;
Iac = -1.01*10^8;
z = 14;
height_t = 129.13;
options = odeset('reltol',1e-13);
for x = 0:0.1:10 % Initial displacement
input_p = x * pi /180; % Platform initial angle
h = figure ;
input_t = 0; % TTD initial angle
d_t = .125 ;
t_span = [0,0.1,100]; % Time span
y0 = [0 0 0 0 0 input_t 0 input_p];
% Perform integration to find displacements
[t_out,y_out] = ode45(@(t,y) Reduced_Degree_model(t,y,ma,ht,ms,m,hs,Iac,ks,cs,mh,kh,ch,It,mt,g,kt,ct,Ip,Ia,z,cp), t_span, y0, options);
PtfmPitch_deg = ( y_out (: ,7) *180/ pi ) ; % PtfmPitch_deg time domain output
StDev_PtfmPitch_deg = std ( PtfmPitch_deg ) ; % PtfmPitch_deg standard deviation
TDspFA_deg = ( y_out (: ,5) *180/ pi ) ; % TTDspFA_deg time domain output
StDev_TTDspFA_deg = std ( TTDspFA_deg ) ; % TTDspFA_deg standard deviation
TTDspFA_m = height_t * sind (( y_out (: ,5) *180/ pi ) ) ; % TTDspFA_m time domain output
StDev_TTDspFA_m = std ( TTDspFA_m ) ; % TTDspFA_m standard deviation
subplot (2 ,2 ,1) ; plot ( t_out , PtfmPitch_deg ) ; hold on ; grid on ; xlabel ('time (s)') ;
ylabel ('Pitch (deg)') ; title ('Pitch (deg)')
subplot (2 ,2 ,2) ; plot ( t_out , TTDspFA_m ) ; hold on ; grid on ; xlabel ('time (s)') ;
ylabel ('TTDsp (m)') ; title ('TTDsp (m)') ;
subplot (2 ,2 ,3) ; plot ( t_out , TTDspFA_deg ) ; hold on ; grid on ; xlabel ('time (s)') ;
ylabel ('TTDsp (deg )') ; title ('TTDsp (deg )') ;
% Create Figure 1 , Figure 2 , Figure 3 ,...
base_file_name = sprintf (' Ini_plat_angle % .1f.fig ',x ) ;
fullfileName = fullfile ( data_folder , base_file_name ) ;
saveas ( gcf , fullfileName ) ; % Saves the generated figure
end
function dy = Reduced_Degree_model(y,ma,ht,ms,m,hs,Iac,ks,cs,mh,kh,ch,It,mt,g,kt,ct,Ip,Ia,z,cp,...
t_span, y0)
dy = zeros(8,2);
% surge:
dy(1,1) = y(2,1);
dy(2,1) = 1/(m+ma)*(-mt*ht*dy(6,1)+ms*hs*dy(8,1)-Iac*dy(8,1)-ks*y(1)+ks*z*y(7)-cs*y(2));
% heave
dy(3,1) = y(4,1);
dy(4,1) = -1/(m+mh)*(kh*y(3)+ch*y(4));
% tower
dy(5,1) = y(6,1);
dy(6,1) = 1/(It+mt*(ht)^2)*(-mt*ht*dy(2,1)-(kt+mt*g*ht)*y(5)+kt*y(7)-ct*y(6)+ct*y(8));
% platform
dy(7,1) = y(8,1);
dy(8,1) = 1/(Ip+ms*hs^2+Ia)*((ms*hs-Iac)*dy(2,1)+ks*z*y(1)+kt*y(5)-(kp+ks*(z)^2+kt)*y(7)+cy*y(6)+(ct+cp)*y(8));

采纳的回答

Sam Chak
Sam Chak 2024-1-29
Hi @Yu
In addition to the technical points raised by @Jon and @Dyuman Joshi, there is a major issue with the way you have modeled the dynamics. If you observe the three state equations, you'll notice that they are coupled together. Specifically, depends on and , but both and also depend on , creating interdependent nested loops. Unfortunately, this is not allowed in the MATLAB ODE solver, at least not in the presented form.
dy(2,1) = 1/(m + ma)*(- mt*ht*dy(6,1) + ms*hs*dy(8,1) - Iac*dy(8,1) - ks*y(1) + ks*z*y(7) - cs*y(2));
% ^^^^^^^ ^^^^^^^
dy(6,1) = 1/(It + mt*(ht)^2)*(- mt*ht*dy(2,1) - (kt + mt*g*ht)*y(5) + kt*y(7) - ct*y(6) + ct*y(8));
% ^^^^^^^
dy(8,1) = 1/(Ip + ms*hs^2 + Ia)*((ms*hs - Iac)*dy(2,1) + ks*z*y(1) + kt*y(5) - (kp + ks*(z)^2 + kt)*y(7) + cy*y(6) + (ct + cp)*y(8));
% ^^^^^^^
To address this issue, you can rearrange the equations by moving all the first-order derivatives to the left-hand side and create a Mass matrix. This special matrix can be specified using the odeset() command. Alternatively, you can utilize the odeToVectorField() command to convert the improper ODEs into a standardized system of first-order ODEs. The latter approach involves some symbolic work and requires the Symbolic Math Toolbox.
  4 个评论
Yu
Yu 2024-3-4
Thank you for your guildance. Now it seems that the codes work after I transfer the equation to martix form and use the 'odefn'. But I am not sure wether it is correct (I run it successfully however it seems not very accurate.). I am not sure if I am supposed to set the calculation accuracy. Please see the codes below:
z = 14;
ht = 56.50;
hp = 14.94;
height_t = 129.13;
g = 9.81;
m = 20093000; % total mass
mp = 17839000; % platform mass
mt = 2254000; % tower+RNA mass
ma = 9.64*10^6; % Added mass for platform surge
mh = 2.480*10^7; % Added mass for platform heave
Ia = 1.16*10^10; % Added mass for platform pitch
Iac = -1.01*10^8;
cs = 1.1029*10^6;
ct = 6.9515*10^7;
cp = 3.4079*10^6;
ch = 1.3*10^5;
ks = 6.6026*10^4;
kp = -3.0746*10^8;
kh = 4.470*10^6;
kt = 1.5944*10^10;
tspan = 0:200;
X0 = [0;10;10;0;0;0;0;0]; % [x10;x20;x30;x40; dx1dt0;dx2dt0;dx3dt0;dx4dt0]
[t, X] = ode45(@(t,X) odefn(t,X,tspan,g,m,ms,mt,It,Ip,ma,Ia,mh,Iac,ks,kt,kp,kh,cs,ct,cp,ch,z,ht,hp), tspan, X0);
Unrecognized function or variable 'ms'.

Error in solution>@(t,X)odefn(t,X,tspan,g,m,ms,mt,It,Ip,ma,Ia,mh,Iac,ks,kt,kp,kh,cs,ct,cp,ch,z,ht,hp) (line 25)
[t, X] = ode45(@(t,X) odefn(t,X,tspan,g,m,ms,mt,It,Ip,ma,Ia,mh,Iac,ks,kt,kp,kh,cs,ct,cp,ch,z,ht,hp), tspan, X0);

Error in odearguments (line 92)
f0 = ode(t0,y0,args{:}); % ODE15I sets args{1} to yp0.

Error in ode45 (line 104)
odearguments(odeIsFuncHandle,odeTreatAsMFile, solver_name, ode, tspan, y0, options, varargin);
subplot(3,1,1)
plot(t,X(:,1)),grid
xlabel('t'),ylabel('surge')
subplot(3,1,2)
plot(t,X(:,2)),grid
xlabel('t'),ylabel('Tower Pitch')
subplot(3,1,3)
plot(t,X(:,3)),grid
xlabel('t'),ylabel('Platform Pitch')
function dXdt = odefn(t,X,tspan,g,m,mp,mt,ma,Ia,It,Ip,mh,Iac,ks,kt,kp,kh,cs,ct,cp,ch,z,ht,hp)
x = X(1:4);
xdot = X(5:8);
M = [m mt*ht Iac 0;...
mt*ht It 0 0;...
Iac 0 Ip 0;...
0 0 0 m];
A = [ma 0 -mp*hp 0;...
0 mt*ht^2 0 0;...
-mp*hp 0 Ia 0;...
0 0 0 mh];
C = [cs 0 0 0;...
0 ct -ct 0;...
0 -ct ct+cp 0;...
0 0 0 ch];
K = [ks 0 -ks*z 0;...
0 kt-mt*ht -kt 0;...
-ks*z -kt kp+ks*z^2+kt+mp*g*hp 0;...
0 0 0 kh];
xddot = (M+A)\(-K*x-C*xdot);
dXdt = [xdot; xddot];
end
Thank you for your support!
Best wishes,
Yu
Torsten
Torsten 2024-3-4
编辑:Torsten 2024-3-4
The list of variables for the ode function is inconsistent (see above).
For higher accuracy, use e.g.
options = odeset('RelTol',1e-10,'AbsTol',1e-10)
[t, X] = ode45(@(t,X) odefn(t,X,tspan,g,m,ms,mt,It,Ip,ma,Ia,mh,Iac,ks,kt,kp,kh,cs,ct,cp,ch,z,ht,hp), tspan, X0, options);

请先登录,再进行评论。

更多回答(2 个)

Jon
Jon 2024-1-29
编辑:Jon 2024-1-29
It looks like your argument list for your function Reduced_Degree_model, is not consistent with the call you make to ode45 with the anonymous function. I immediately see that the first argument in the call is t, as it should be, but the first argument in the function is y. So time, a scalar is getting passed in as y, and then you try to access the second element of a scalar and you get the error message you report.
You should check that the rest of the arguments for Reduced_Degree_model are consistent between the call to ode45 with the anonymous function and the function definition
  1 个评论
Yu
Yu 2024-1-30
Sorry for my late response and many thanks for your comments. I am going to check my codes with your suggestions.

请先登录,再进行评论。


Dyuman Joshi
Dyuman Joshi 2024-1-29
  • You have not defined "t" and many other variables as input to the function "Reduced_Degree_model".
  • You have defined "tspan" and "y0" as inputs to "Reduced_Degree_model", which is incorrect.
  • The variable "cy" in the last line of code (where dy(8,1) is defined) seems to be a typo.
  • dy is to be pre-allocated as 8x1 not 8x2.
  • There are typos in names of variables used in the for loop.
There might be other mistakes in your code. I suggest you go through your code line by line and check thoroughly.

类别

Help CenterFile Exchange 中查找有关 Ordinary Differential Equations 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by