Layers argument must be an array of layers or a layer graph.
3 次查看(过去 30 天)
显示 更早的评论
XTrain = xlsread('R1_all_data.xlsx',1,'A1:G3788')';
YTrain = xlsread('R1_all_data.xlsx',1, 'H1:H3788')';
XTest = xlsread('R2_all_data.xlsx',1, 'A1:G3788')';
YTest = xlsread('R2_all_data.xlsx',1, 'H1:H3788')';
inputSize = 3788;
numResponses = 1;
numHiddenUnits = 5000;
layers = { sequenceInputLayer(inputSize)
lstmLayer(numHiddenUnits)
fullyConnectedLayer(numResponses)
regressionLayer };
opts = trainingOptions('adam', 'MaxEpochs', 1000, 'GradientThreshold', 0.01, 'InitialLearnRate',0.0001);
net = trainNetwork(XTrain,YTrain,layers,opts);
YPred1=predict(net,XTest)
1 个评论
回答(1 个)
Krishna
2024-2-10
Hello PRAMOD,
It appears that the issue you're encountering stems from an improper initialization of the layers object. The mistake was made by using curly braces {} to initialize:
layers = { sequenceInputLayer(inputSize)
lstmLayer(numHiddenUnits)
fullyConnectedLayer(numResponses)
regressionLayer }
Instead, you should initialize using square brackets [] like this:
layers = [ sequenceInputLayer(inputSize)
lstmLayer(numHiddenUnits)
fullyConnectedLayer(numResponses)
regressionLayer ]
I hope this correction resolves your problem.
0 个评论
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Image Data Workflows 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!