Create confusion matrix from LDA model

4 次查看(过去 30 天)
It is easy to train an LDA model and find its accuracy by cross-validation as below:
Mdl = fitcdiscr(data, "Response_var_name", CrossVal="on");
validationAccuracy = 1 - kfoldLoss(Mdl, 'LossFun', 'ClassifError');
However, what is the easiest/best way to get the confusion matrix?
Thanks.

采纳的回答

the cyclist
the cyclist 2024-2-23
The ClassificationDiscrimant class has a predict function. You can input the predicted and actual labels into the confusionchart function.
  4 个评论
Leon
Leon 2024-2-23
编辑:Leon 2024-2-26
Good to know. Maybe I would be better to use kfoldPredict(), then?
the cyclist
the cyclist 2024-2-23
Yes, I think that is sensible.
I have to admit, though, that I don't fully comprehend how kfoldPredict goes from this statement (from the documentation)
========================================================================
"For every fold, kfoldPredict predicts class labels for validation-fold observations using a classifier trained on training-fold observations."
========================================================================
-- to a single prediction for the model (as opposed to a prediction per fold, which is how I read that statement). It is presumably possible to use the debugger to step into the function and see exactly what it is doing, but I have not done that.

请先登录,再进行评论。

更多回答(0 个)

产品


版本

R2023b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by