Plateau followed by one phase decay

3 次查看(过去 30 天)
Good morning, I am trying to figure out how to compute tau constants from my data
My data could be be fitted by such plateau followed by one phase decay function:
I tried to implement it in MATLAB as follows:
x = 0:0.5:20; % time in seconds
Y0 = -0.6; % signal baseline value
Plateau = -1; % singnal plateu after trigger/stimulus, maximum change from baseline
tau = 0.6; % exponenential decay constant
K = 1/tau; % rate constant in units reciprocal of the x-axis units
X0 = 5; % trigger time
y = Plateau+(Y0-Plateau)*exp(-K*(x-X0));
figure;plot(x,y,'k');
However, I get the following result:
I would have 2 questions:
1) why cant I reproduce the one phase decay function?
2) would you know how to use the matlab funciton "fit" for such data with plateau followed by one phase decay function?
Thanks community for your kind support,
Best regards.

回答(2 个)

Alan Stevens
Alan Stevens 2024-2-26
Like this?
x = 0:0.5:20; % time in seconds
Y0 = -0.6; % signal baseline value
Plateau = -1; % singnal plateu after trigger/stimulus, maximum change from baseline
tau = 0.6; % exponenential decay constant
K = 1/tau; % rate constant in units reciprocal of the x-axis units
X0 = 5; % trigger time
y = Y0*(x<=X0)+(Plateau+(Y0-Plateau)*exp(-K*(x-X0))).*(x>X0);
figure;plot(x,y,'k');
  5 个评论
Alan Stevens
Alan Stevens 2024-2-26
Here's a quick fit of tau and Y0. I'll leave you to tidy it up and extend it to fit X0 as well.
x = 0:0.5:20;
y = [-0.137055262721364 -0.118841612584876 -0.274602636741299 -0.117324828772196 ...
-0.173528150754918 -0.280491919000118 -0.244300356226590 -0.367583069701879 ...
-0.423274105143034 -0.529129050767333 -0.774173830727337 -0.676677606159725 ...
-0.730062482232667 -0.863905715495076 -0.831675679632950 -0.987303352625066 ...
-0.949979744575626 -0.865710605996821 -0.901728879393798 -0.877082148456042 ...
-0.944693953430828 -1.07404346760035 -0.915521627715257 -0.901789963321291 ...
-0.955365771797851 -0.941530617721837 -0.945983148775748 -1.01735658137382 ...
-0.965635004813717 -1.06321643780048 -0.956807780654745 -1.09208906741553 ...
-1.04341265165344 -1.08982901817714 -1.07984413818039 -0.934740294823467 ...
-0.960591807908718 -1.03623550995537 -0.909687220130007 -1.09290177705358 ...
-1.01208835337351];
Plateau = -1;
X0 = 2;
fn = @(x,tau,Y0)Y0*(x<=X0)+(Plateau+(Y0-Plateau)*exp(-(x-X0)/tau)).*(x>X0);
tauY0 = [1, -0.1]; % Initial guess
tauY = fminsearch(@(tauY) F(tauY,x,y), tauY0);
tau = tauY(1); Y0 = tauY(2);
yfit = fn(x,tau,Y0);
plot(x,y,'.',x,yfit), grid
xlabel('x'), ylabel('y')
text(12,-0.25,['tau = ' num2str(tau)])
text(12,-0.35,['Y0 = ' num2str(Y0)])
function Z = F(tauY,x,y)
tau = tauY(1); Y0 = tauY(2);
Plateau = -1;
X0 = 2;
yvals = zeros(1,numel(x));
for i = 1:numel(x)
t = x(i) - X0;
yvals(i) = Y0*(t<=0)+(Plateau+(Y0-Plateau)*exp(-t/tau)).*(t>0);
end
Z = norm(yvals-y);
end
Francesco
Francesco 2024-4-25
Hello, I tried to implement the solution above, however I did not manage to have single function that provides all relevant parameters such as R squared, and Tau (or K).
For my analysis, Y0, X0 and Plateau are not relevant as main outputs.
Community help is greatly appreciated.

请先登录,再进行评论。


Francesco
Francesco 2024-2-27
Thanks Alan for your fantastic help, this is of great help, I guess for now this is resolved :) and I will figure out if there will be need for a function to automatically find X0. Best regards.

类别

Help CenterFile Exchange 中查找有关 Linear and Nonlinear Regression 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by