Plateau followed by one phase decay
3 次查看(过去 30 天)
显示 更早的评论
Good morning, I am trying to figure out how to compute tau constants from my data
My data could be be fitted by such plateau followed by one phase decay function:
I tried to implement it in MATLAB as follows:
x = 0:0.5:20; % time in seconds
Y0 = -0.6; % signal baseline value
Plateau = -1; % singnal plateu after trigger/stimulus, maximum change from baseline
tau = 0.6; % exponenential decay constant
K = 1/tau; % rate constant in units reciprocal of the x-axis units
X0 = 5; % trigger time
y = Plateau+(Y0-Plateau)*exp(-K*(x-X0));
figure;plot(x,y,'k');
However, I get the following result:
I would have 2 questions:
1) why cant I reproduce the one phase decay function?
2) would you know how to use the matlab funciton "fit" for such data with plateau followed by one phase decay function?
Thanks community for your kind support,
Best regards.
0 个评论
回答(2 个)
Alan Stevens
2024-2-26
Like this?
x = 0:0.5:20; % time in seconds
Y0 = -0.6; % signal baseline value
Plateau = -1; % singnal plateu after trigger/stimulus, maximum change from baseline
tau = 0.6; % exponenential decay constant
K = 1/tau; % rate constant in units reciprocal of the x-axis units
X0 = 5; % trigger time
y = Y0*(x<=X0)+(Plateau+(Y0-Plateau)*exp(-K*(x-X0))).*(x>X0);
figure;plot(x,y,'k');
5 个评论
Alan Stevens
2024-2-26
Here's a quick fit of tau and Y0. I'll leave you to tidy it up and extend it to fit X0 as well.
x = 0:0.5:20;
y = [-0.137055262721364 -0.118841612584876 -0.274602636741299 -0.117324828772196 ...
-0.173528150754918 -0.280491919000118 -0.244300356226590 -0.367583069701879 ...
-0.423274105143034 -0.529129050767333 -0.774173830727337 -0.676677606159725 ...
-0.730062482232667 -0.863905715495076 -0.831675679632950 -0.987303352625066 ...
-0.949979744575626 -0.865710605996821 -0.901728879393798 -0.877082148456042 ...
-0.944693953430828 -1.07404346760035 -0.915521627715257 -0.901789963321291 ...
-0.955365771797851 -0.941530617721837 -0.945983148775748 -1.01735658137382 ...
-0.965635004813717 -1.06321643780048 -0.956807780654745 -1.09208906741553 ...
-1.04341265165344 -1.08982901817714 -1.07984413818039 -0.934740294823467 ...
-0.960591807908718 -1.03623550995537 -0.909687220130007 -1.09290177705358 ...
-1.01208835337351];
Plateau = -1;
X0 = 2;
fn = @(x,tau,Y0)Y0*(x<=X0)+(Plateau+(Y0-Plateau)*exp(-(x-X0)/tau)).*(x>X0);
tauY0 = [1, -0.1]; % Initial guess
tauY = fminsearch(@(tauY) F(tauY,x,y), tauY0);
tau = tauY(1); Y0 = tauY(2);
yfit = fn(x,tau,Y0);
plot(x,y,'.',x,yfit), grid
xlabel('x'), ylabel('y')
text(12,-0.25,['tau = ' num2str(tau)])
text(12,-0.35,['Y0 = ' num2str(Y0)])
function Z = F(tauY,x,y)
tau = tauY(1); Y0 = tauY(2);
Plateau = -1;
X0 = 2;
yvals = zeros(1,numel(x));
for i = 1:numel(x)
t = x(i) - X0;
yvals(i) = Y0*(t<=0)+(Plateau+(Y0-Plateau)*exp(-t/tau)).*(t>0);
end
Z = norm(yvals-y);
end
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Linear and Nonlinear Regression 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!