Find critical points of parametric function
3 次查看(过去 30 天)
显示 更早的评论
Hi, I want to find the critical points and the value of the function at those critical points, of the following function:
where are positive constants. I tried using this code:
clear; clc; close all;
syms y w ws R L C;
y = ((w+ws)*(w^2+ws^2)*(L^2*C^3))/((w*R^2*C+(w^2*L*C-1)^2)*(ws*R^2*C+(ws^2*L*C-1)^2));
dy = diff(y,w);
critical_points = solve(dy == 0);
The critical points calculated:
root(C^2*L^2*z^6 + 2*C^2*L^2*ws*z^5 + 3*C^2*L^2*ws^2*z^4 + 2*C*L*z^4 + 4*C^2*L^2*ws^3*z^3 - 2*C*R^2*z^3 - C*R^2*ws*z^2 - 2*C*L*ws^2*z^2 - 3*z^2 - 4*C*L*ws^3*z - 2*ws*z + C*R^2*ws^3 - ws^2, z, 1)
root(C^2*L^2*z^6 + 2*C^2*L^2*ws*z^5 + 3*C^2*L^2*ws^2*z^4 + 2*C*L*z^4 + 4*C^2*L^2*ws^3*z^3 - 2*C*R^2*z^3 - C*R^2*ws*z^2 - 2*C*L*ws^2*z^2 - 3*z^2 - 4*C*L*ws^3*z - 2*ws*z + C*R^2*ws^3 - ws^2, z, 2)
root(C^2*L^2*z^6 + 2*C^2*L^2*ws*z^5 + 3*C^2*L^2*ws^2*z^4 + 2*C*L*z^4 + 4*C^2*L^2*ws^3*z^3 - 2*C*R^2*z^3 - C*R^2*ws*z^2 - 2*C*L*ws^2*z^2 - 3*z^2 - 4*C*L*ws^3*z - 2*ws*z + C*R^2*ws^3 - ws^2, z, 3)
root(C^2*L^2*z^6 + 2*C^2*L^2*ws*z^5 + 3*C^2*L^2*ws^2*z^4 + 2*C*L*z^4 + 4*C^2*L^2*ws^3*z^3 - 2*C*R^2*z^3 - C*R^2*ws*z^2 - 2*C*L*ws^2*z^2 - 3*z^2 - 4*C*L*ws^3*z - 2*ws*z + C*R^2*ws^3 - ws^2, z, 4)
root(C^2*L^2*z^6 + 2*C^2*L^2*ws*z^5 + 3*C^2*L^2*ws^2*z^4 + 2*C*L*z^4 + 4*C^2*L^2*ws^3*z^3 - 2*C*R^2*z^3 - C*R^2*ws*z^2 - 2*C*L*ws^2*z^2 - 3*z^2 - 4*C*L*ws^3*z - 2*ws*z + C*R^2*ws^3 - ws^2, z, 5)
root(C^2*L^2*z^6 + 2*C^2*L^2*ws*z^5 + 3*C^2*L^2*ws^2*z^4 + 2*C*L*z^4 + 4*C^2*L^2*ws^3*z^3 - 2*C*R^2*z^3 - C*R^2*ws*z^2 - 2*C*L*ws^2*z^2 - 3*z^2 - 4*C*L*ws^3*z - 2*ws*z + C*R^2*ws^3 - ws^2, z, 6)
I'm not sure how to interpret the results in critical_points. What is z? and why are they all the same? what did I miss?
Another this, is there any easy way to place them back into the function to calculate its value at those points? couldn't find anything useful in the documentation, but I'm still new, so probably just missed it.
Thank you so much for your time and attention!
0 个评论
采纳的回答
更多回答(0 个)
另请参阅
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!