For a repeated eigenvalue only one eigenvctor is being returned

10 次查看(过去 30 天)
for my matrix
A = [1 1 4 0; 1 1 1 -1; 0 0 3 1; 0 0 3 1], it is showing there is a repeated eigenvalue of 0, which is correct however the eigenvectors from when i do [V,D] = eig(A) for the 0's are both [-1; 1; 0; 0] when i have calculated there is a second one of [4/3; 0; -1/3; 1] just confused to why it is not outputting the eigenvectors.

采纳的回答

Karl
Karl 2024-3-17
Another approach, which gives the additional eigenvector that you calculated, is to obtain the eigenvector(s), x, for eigenvalue v as solutions of (A-v*I)*x = 0:
format rational
A = [1 1 4 0; 1 1 1 -1; 0 0 3 1; 0 0 3 1];
display_eigenvectors(A)
eigenvalue: 0.000000 eigenvector(s): -1 4/3 1 0 0 -1/3 0 1 eigenvalue: 2.000000 eigenvector(s): 1 1 0 0 eigenvalue: 4.000000 eigenvector(s): 3/2 1/2 1 1
function display_eigenvectors(A)
%DISPLAY_EIGENVECTORS Display eigenvectors for square matrix A.
% The eigenvector(s), x, for each eigenvalue, v, are obtained as
% a rational orthnormal basis of the null space of (A-v*I), where
% I is the unit matrix with the same size as A. The eigenvectors
% are then solutions of (A-v*I)*x = 0.
I = eye(size(A));
for v=unique(eig(A))'
fprintf(1,'\neigenvalue: %f\n eigenvector(s):\n',v)
disp(null(A-v*I,'rational'))
end
end

更多回答(2 个)

Bruno Luong
Bruno Luong 2024-3-17
编辑:Bruno Luong 2024-3-17
Indeed in case of eigenvalue with multiplicity > 1; the problemie is numerical challenging and MATLAB might fail to find the correct eigen vectors as with your case.
  1 个评论
Bruno Luong
Bruno Luong 2024-3-17
The issue is that MATLAB numerical error will make matrix reduces to Jordan form and think that 0 has incorrectly 1-dimentional eigenspace and not 2 due to tiny numerical error.
Symbolic eig would work since there is no roundoff error
A = [1 1 4 0; 1 1 1 -1; 0 0 3 1; 0 0 3 1];
[V,D] = eig(sym(A))
V = 
D = 

请先登录,再进行评论。


Bruno Luong
Bruno Luong 2024-4-14
移动:Bruno Luong 2024-4-14
UPDATE: From the discussion here using EIG with 2 arguments can do the trick and overcome the issue and return an independent eigen vector associate with 0
A = [1 1 4 0; 1 1 1 -1; 0 0 3 1; 0 0 3 1];
[V,D] = eig(A,eye(size(A)));
V4 = V(:,4)
V4 = 4x1
0.6667 0.6667 -0.3333 1.0000
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
A*V4
ans = 4x1
0 0 0 0
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>

类别

Help CenterFile Exchange 中查找有关 Linear Algebra 的更多信息

标签

产品


版本

R2023b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by