optimization problem for exponential coefficients

1 次查看(过去 30 天)
Hello , i have the attached code which produces certain radiation pattern shown below.
basicly in matlab view its AF,theta plot.
In in code the coeeficients of real_voltage phases are known, however i want to create a code which given AF,theta it whould return me the best optimized real_voltage phases coefficients.
Thanks.
theta=linspace(-pi/2,pi/2,1000);
f=5.6;
N=6;
lambda=300/f;
d=0.8*lambda;
theta_0=pi*((0)/180);
amplitude_norm_V=[0.05,0.3,0.75,1,0.75,0.3,0.05];
k=(2*pi)/lambda;
delta=k*d*cos(theta_0);
x=sqrt(1/(sum(amplitude_norm_V.^2)));
real_voltage=amplitude_norm_V.*x;
real_power=(real_voltage.^2);
sum(real_power);
phases=[0,0,0,0,0,0,0];
total=0;
tot=0;
for z=1:6
AF=real_voltage(z)*exp(1i*(phases(z)/180*pi))*exp(-1i*(z-1)*k*d*cos(theta)+1i*(z-1)*delta);
total=total+AF;
end
plot((theta/pi)*180,20*log10(total)), grid on
Warning: Imaginary parts of complex X and/or Y arguments ignored.

回答(1 个)

Morgan
Morgan 2024-3-25
This sounds like a non-linear regression problem if I'm understanding your question correctly.
The function you're fitting to looks like:
Use fitnlm() and how to use fitnlm() to solve for the best fit coefficients in your case.
  3 个评论
Morgan
Morgan 2024-3-26
编辑:Morgan 2024-3-26
% NUMBER OF FIT PARAMETERS
N = 6;
% THETA ARRAY
theta = linspace(-pi/2,+pi/2,1000);
% V DATA
V = ... % Your data for V that has length of N
% AF DATA
AF = ... % Your data for AF the same size as theta
% COEFFICIENT GUESS
beta0 = zeros(1,N);
% SOLVE NONLINEAR REGRESSION MODEL
mdl = fitnlm(theta,AF,@(b,theta) modelfun(b,theta,V),beta0)
% FUNCTION MODEL
function y = modelfun(b,theta,V)
y = 0;
for n = 1 : length(V)
y = y + V(n)*exp(1i*b(n))*exp(1i*(n-1)*(delta - k*d*cos(theta)));
end
end
fima v
fima v 2024-3-29
Hello, what is my expression has not jus V but also phases.How does the code will change then?
Thanks.

请先登录,再进行评论。

类别

Help CenterFile Exchange 中查找有关 Nonlinear Regression 的更多信息

标签

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by