The order of the state variables between
and
is swapped in the symbolic approach.
syms v(t) y(t) w(t) z(t)
% Parameter
k1 = 1000000;
k2 = 10;
k3 = 1000000;
k4 = 10;
A = 0.00001;
B = 0.00002;
alpha = 1.5;
% Defining System of Differential Equations
eqns = [
diff(y) == k1*A*alpha*w - k2*y + k3*alpha*B*v - k4*y,
diff(v) == k1*A*z - k2*v - k3*alpha*B*v + k4*y,
diff(w) == -k1*A*alpha*w + k2*y + k3*B*z - k4*w,
diff(z) == -k1*A*z + k2*v - k3*B*z + k4*w
];
% [diff(y) == k1*A*alpha*y(3) - k2*y(1) + k3*alpha*B*y(2) - k4*y(1);
% diff(v) == k1*A*y(4) - k2*y(2) - k3*alpha*B*y(2) + k4*y(1);
% diff(w) == -k1*A*alpha*y(3) + k2*y(1) + k3*B*y(4) - k4*y(3);
% diff(z) == -k1*A*y(4) + k2*y(2) - k3*B*y(4) + k4*y(3)];
initCond = [y(0) == 0, v(0) == 0, w(0) == 0, z(0) == 1];
% Solving DEs
[vSol(t), ySol(t), wSol(t), zSol(t)] = dsolve(eqns,initCond);
% Showing Results
v = vpa(vSol(t));
y = vpa(ySol(t));
w = vpa(wSol(t));
z = vpa(zSol(t));
% Plotting the graph
hold on;
fplot(w, [0, 0.5], 'LineWidth', 2);
fplot(v, [0, 0.5], 'LineWidth', 2);
fplot(y, [0, 0.5], 'LineWidth', 2);
fplot(z, [0, 0.5], 'LineWidth', 2);
xlabel('Time (t)');
ylabel('Value');
legend('w(t)', 'v(t)', 'y(t)', 'z(t)');
hold off; grid on



