How do I use fminunc with two variables?

9 次查看(过去 30 天)
I am trying to minize the follwing function q given x and muk where muk is each element of the array mu.
I first created the function q and dq, which is the gradient of q with two variables x and muk to be general.
Then, when I am work with the for loop over the size of mu, I was trying to plug in mu particularly and minize the function, q_, which is now a function of the variable x only. However, my code fails and if you guys can look at it. I'll very much appreciate it.
-------------------------------- Code is here -----------------------------------------------
mu = [1, 10, 100, 1000];
tau = 1 ./ mu;
q = @(x, muk) x(1) + x(2) + (muk / 2) * (x(1)^2 + x(2)^2 - 2)^2;
dq = @(x, muk) [1 + muk * 2 * x(1) * (x(1)^2 + x(2)^2 - 2); 1 + muk * 2 * x(2) * (x(1)^2 + x(2)^2 - 2)];
options = optimoptions('fminunc', 'Algorithm', 'trust-region', 'HessianApproximation', 'bfgs', 'SpecifyObjectiveGradient', true);
x0 = [1; 0];
xk = x0;
for k = 1:length(mu)
a = mu(k);
q_ = @(x)(q(x, a));
dq_ = @(x)(dq(x, a));
dq_2 = dq_(xk);
while norm(dq_2) > tau(k)
[x,fval] = fminunc(q_,xk,options)
xk = x;
dq_2 = dq_(xk);
end
xk
end
And I got these error at [x,fval] = fminunc(q_,xk,options) saying
Error using +
Too many output arguments.
Error in HW4_3>@(x,muk)x(1)+x(2)+(muk/2)*(x(1)^2+x(2)^2-2)^2 (line 6)
q = @(x, muk) x(1) + x(2) + (muk / 2) * (x(1)^2 + x(2)^2 - 2)^2;
Error in HW4_3>@(x)(q(x,a)) (line 18)
q_ = @(x)(q(x, a));
Error in fminunc (line 345)
[f,GRAD] = feval(funfcn{3},x,varargin{:});
Caused by:
Failure in initial objective function evaluation. FMINUNC cannot continue.

回答(1 个)

Torsten
Torsten 2024-4-2
编辑:Torsten 2024-4-2
You tell "fminunc" that you supply the gradient of the objective, but you don't do it.
mu = [1, 10, 100, 1000];
tau = 1 ./ mu;
q = @(x, muk) x(1) + x(2) + (muk / 2) * (x(1)^2 + x(2)^2 - 2)^2;
dq = @(x, muk) [1 + muk * 2 * x(1) * (x(1)^2 + x(2)^2 - 2); 1 + muk * 2 * x(2) * (x(1)^2 + x(2)^2 - 2)];
options = optimoptions('fminunc', 'Algorithm', 'trust-region', 'HessianApproximation', 'bfgs', 'SpecifyObjectiveGradient', true);
x0 = [1; 0];
%xk = x0;
for k = 1:length(mu)
a = mu(k);
%q_ = @(x)(q(x, a));
%dq_ = @(x)(dq(x, a));
%dq_2 = dq_(xk);
%while norm(dq_2) > tau(k)
[x,fval] = fminunc(@(x)q_(x,a,q,dq),x0,options)
%xk = x;
%dq_2 = dq_(xk);
%end
x
end
Local minimum found. Optimization completed because the size of the gradient is less than the value of the optimality tolerance.
x = 2x1
-1.1072 -1.1072
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
fval = -2.1123
x = 2x1
-1.1072 -1.1072
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
Local minimum possible. fminunc stopped because the final change in function value relative to its initial value is less than the value of the function tolerance.
x = 2x1
-1.0123 -1.0123
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
fval = -2.0123
x = 2x1
-1.0123 -1.0123
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
Local minimum possible. fminunc stopped because the final change in function value relative to its initial value is less than the value of the function tolerance.
x = 2x1
-1.0012 -1.0013
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
fval = -2.0012
x = 2x1
-1.0012 -1.0013
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
Local minimum possible. fminunc stopped because the final change in function value relative to its initial value is less than the value of the function tolerance.
x = 2x1
-1.0001 -1.0001
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
fval = -2.0001
x = 2x1
-1.0001 -1.0001
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
function [z gz] = q_(x,a,q,dq)
z = q(x,a);
if nargout > 1
gz = dq(x,a);
end
end

类别

Help CenterFile Exchange 中查找有关 Simulink Coder 的更多信息

标签

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by