How to remove data Overfitting Issue in my training model
1 次查看(过去 30 天)
显示 更早的评论
I am working on project of facial recognisation of endangered species and I am getting mini batch accuracy of 100% , I am using AlexNet for training. The number of images of endangered species I am using is African elephant with count of 470. Even after do argumantation mini batch accuracy is still same. Help me to remove this overfitting.
Data Training Code:
net = alexnet;
layers = [imageInputLayer([227 227 3])
net(2:end-3)
fullyConnectedLayer(1)
softmaxLayer
classificationLayer()
];
opt = trainingOptions('sgdm', 'MaxEpochs', 100, 'InitialLearnRate', 0.0001,'Plots','training-progress');
training = trainNetwork(trainData,layers,opt);
0 个评论
回答(1 个)
Shreshth
2025-1-17
Hi Naitik,
I found similar question in the community -
Also, refer to the following MathWorks documentation for more information on how to avoid overfitting:
Hope this helps!
0 个评论
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Image Data Workflows 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!