Stopping Criteria in bayesopt for Early Termination

12 次查看(过去 30 天)
I'm working with bayesopt for Bayesian optimization in MATLAB. I want to implement a stopping criterion that terminates the optimization process when a specific condition is met like minimum tolerence level 1e-3, allowing for early termination if improvement becomes insignificant. Here's the relevant portion of my bayesopt command:
results = bayesopt(@optimizeParameters, parRange, ...
'IsObjectiveDeterministic', false, ...
'AcquisitionFunctionName', 'expected-improvement-plus', ...
'Verbose', 0, ...
'ExplorationRatio', 0.6, ...
'MaxObjectiveEvaluations', 100);
Could you provide guidance on how to best achieve this using bayesopt.

采纳的回答

Tejas
Tejas 2024-4-25
Hello Muhammad,
It seems you want a method to halt Bayesian optimization prematurely when a certain parameter value falls beneath a specified tolerance level.
This objective can be achieved by crafting a custom function designed to halt the optimization process once a specific condition is satisfied. This function is then invoked using the OutputFcn property of bayesopt. The OutputFcn triggers this custom function at the end of each iteration.
I have created a custom function named terminationFunc to demonstrate this approach. Here is how it operates:
  • The function receives the results and state of the current iteration as input.
  • It monitors the ‘ObjectiveMinimumTrace’ parameter across each iteration.
  • Optimization is halted early if this parameter's value drops below the tolerance threshold of 1e-3.
function stop = terminationFunc(results, state)
persistent bestObjective
stop = false;
if strcmp(state, 'iteration')
if isempty(bestObjective) % True for first iteration
bestObjective = results.ObjectiveMinimumTrace(end);
fprintf('Initializing bestObjective: %e\n', bestObjective);
else
currentObjective = results.ObjectiveMinimumTrace(end);
improvement = abs(currentObjective - bestObjective);
fprintf('Current Improvement: %e\n', improvement);
% Check if improvement is less than the tolerance
if improvement < 1e-3
fprintf('Stopping Optimization: Improvement below minimum tolerance level of 1e-3.\n');
stop = true; % Signal to stop optimization
else
bestObjective = currentObjective;
end
end
elseif strcmp(state, 'initial')
fprintf('Optimization initializing...\n');
elseif strcmp(state, 'done')
fprintf('Optimization completed.\n');
end
end
The function can be executed using the following syntax:
results = bayesopt(@optimizeParameters, parRange, ...
'IsObjectiveDeterministic', false, ...
'AcquisitionFunctionName', 'expected-improvement-plus', ...
'Verbose', 0, ...
'ExplorationRatio', 0.6, ...
'MaxObjectiveEvaluations', 100,'OutputFcn',@terminationFunc);
The effectiveness of this approach was evaluated using a sample Bayesian optimization:
load ionosphere
rng default
num = optimizableVariable('n',[1,30],'Type','integer');
dst = optimizableVariable('dst',{'chebychev','euclidean','minkowski'},'Type','categorical');
c = cvpartition(351,'Kfold',5);
fun = @(x)kfoldLoss(fitcknn(X,Y,'CVPartition',c,'NumNeighbors',x.n,'Distance',char(x.dst),'NSMethod','exhaustive'));
results = bayesopt(fun,[num,dst],'Verbose',0,'AcquisitionFunctionName','expected-improvement-plus','OutputFcn',@terminationFunc);
File is saved as ‘bayesian.m’. Below is the screenshot of the output:
To know more about the OutputFcn property of bayesopt function, refer to this documentation:
Hope it helps!

更多回答(0 个)

类别

Help CenterFile Exchange 中查找有关 Model Building and Assessment 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by