Function to trainNetwork returns an unexpected error

3 次查看(过去 30 天)
My code returns the following error for this function call - What is the fix for this?
net = trainNetwork(X_train, categorical(y_train), layers, options);
Error using trainNetwork (line 191)
Too many input arguments.
Error in LSTMGomz (line 63)
net = trainNetwork(X_train, categorical(y_train), layers, options);
Caused by:
Error using nnet.internal.cnn.trainNetwork.DLTInputParser>iParseInputArguments (line 75)
Too many input arguments.

采纳的回答

Matt J
Matt J 2024-6-8
编辑:Matt J 2024-6-8
Your X_train and y_train data were in some weird format that trainNetwork cannot recognize. Try this instead,
Xdata = num2cell(readmatrix('LSTMdataIn.xlsx')',1)';
N=200;
train_ratio=0.8;
split_index=round(train_ratio*N);
inputSize = height(Xdata{1}); % Number of features in the input data
numClasses = height(Xdata)/N; % Number of categories
Xdata=reshape(Xdata,N,numClasses);
ydata=repmat(1:numClasses,N,1);
X_train=Xdata(1:split_index,:);
y_train=ydata(1:split_index,:);
X_test=Xdata(split_index+1:end,:);
y_test=ydata(1:split_index+1:end,:);
layers = [
sequenceInputLayer(inputSize)
lstmLayer(100, 'OutputMode', 'last')
fullyConnectedLayer(numClasses)
softmaxLayer
classificationLayer
];
options = trainingOptions('adam', 'MaxEpochs', 100);
net = trainNetwork(X_train(:), categorical(y_train(:)), layers, options);
Training on single CPU. |========================================================================================| | Epoch | Iteration | Time Elapsed | Mini-batch | Mini-batch | Base Learning | | | | (hh:mm:ss) | Accuracy | Loss | Rate | |========================================================================================| | 1 | 1 | 00:00:00 | 20.31% | 1.6082 | 0.0010 | | 9 | 50 | 00:00:00 | 79.69% | 0.4997 | 0.0010 | | 17 | 100 | 00:00:00 | 82.81% | 0.2851 | 0.0010 | | 25 | 150 | 00:00:01 | 76.56% | 0.3004 | 0.0010 | | 34 | 200 | 00:00:01 | 79.69% | 0.2844 | 0.0010 | | 42 | 250 | 00:00:01 | 82.81% | 0.2591 | 0.0010 | | 50 | 300 | 00:00:01 | 76.56% | 0.2918 | 0.0010 | | 59 | 350 | 00:00:02 | 79.69% | 0.2794 | 0.0010 | | 67 | 400 | 00:00:02 | 82.81% | 0.2565 | 0.0010 | | 75 | 450 | 00:00:02 | 76.56% | 0.2902 | 0.0010 | | 84 | 500 | 00:00:03 | 79.69% | 0.2782 | 0.0010 | | 92 | 550 | 00:00:03 | 82.81% | 0.2557 | 0.0010 | | 100 | 600 | 00:00:03 | 76.56% | 0.2895 | 0.0010 | |========================================================================================| Training finished: Max epochs completed.
  3 个评论
Ernest Modise - Kgamane
Hi Mat, You have created an interesting data structure for this purpose. I would like to spend time on learning how to configure the data structure. Please send me tops to look at.
Matt J
Matt J 2024-6-9
It's just a cell array of numeric data. You had tables nested inside cells, I think.

请先登录,再进行评论。

更多回答(0 个)

类别

Help CenterFile Exchange 中查找有关 Image Data Workflows 的更多信息

标签

产品


版本

R2024a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by