finding non zero solution for homogeneous system of equations

6 次查看(过去 30 天)
The following code is giving constant values of Nusselt number. The solutions are approximately close to zero.
D = 0.1;
L = 0.1;
B = 0.1;
xi = 0.1;
sigma1 = B^3 .* D^2 .* L^3;
sigma2 = D^2 .* L^3;
Ra_values = (10:100:100000).';
solutions = zeros(length(Ra_values), 7);
%Nu = zeros(length(Ra_values),1);
for i = 1:length(Ra_values)
Ra = Ra_values(i);
R = Ra * xi;
f1 = @(A) -((5.*A(2).*A(6).*pi^5.*B^2.*D^2.*L^4)./8 + (A(2).*A(6).*pi^5.*D^4.*L^4)./4)./sigma1 - (B .* ((A(3).*A(7).*D^4.*pi^5)/4 - (A(1).*L^4.*pi^4)./2 - (32.*A(5).*L^4.*Ra)./9 + (A(1).*L^4.*R.*pi^2)./2 + (5.*A(3).*A(7).*D^2.*L^2.*pi^5)./8))./sigma2;
f2 = @(A) -(B^2 .* (A(2).*A(5).*D^2.*L^4.*pi^5 - (A(2).*D^2.*L^4.*pi^4)./2 - (A(1).*A(6).*D^2.*L^4.*pi^5)./8 - (4.*A(6).*D^2.*L^4.*Ra)./9 + (A(4).*A(7).*D^2.*L^4.*pi^5)./2 + (3.*A(4).*A(7).*D^4.*L^2.*pi^5)./16 + (A(2).*D^2.*L^4.*R.*pi^2)./4) - (A(2).*D^4.*L^4.*pi^4)./4)./sigma1 - (B .* ((A(4).*A(7).*D^4.*pi^5)./8 - (A(2).*L^4.*pi^4)./4 - (16.*A(6).*L^4.*Ra)./9 + (A(2).*L^4.*R.*pi^2)./4 + (5.*A(4).*A(7).*D^2.*L^2.*pi^5)./16))./sigma2;
f3 = @(A) (B .* ((16.*A(7).*L^4.*Ra)./9 + (A(3).*D^4.*pi^4)./4 + (A(3).*L^4.*pi^4)./4 - (A(3).*L^4.*R.*pi^2)./4 + (A(3).*D^2.*L^2.*pi^4)./2 + (A(1).*A(7).*D^2.*L^2.*pi^5)./8 - A(3).*A(5).*D^2.*L^2.*pi^5 - (A(4).*A(6).*D^2.*L^2.*pi^5)./2))./sigma2 - (B^2 .* ((3.*A(4).*A(6).*pi^5.*D^4.*L^2)./16 + (5.*A(4).*A(6).*pi^5.*D^2.*L^4)./16) + (A(4).*A(6).*D^4.*L^4.*pi^5)./8)./sigma1;
f4 = @(A) (B .* pi^2 .* (2.*A(4).*D^4.*pi^2 - 2.*A(4).*L^4.*R + 2.*A(4).*L^4.*pi^2 + 4.*A(4).*D^2.*L^2.*pi^2 + A(2).*A(7).*D^2.*L^2.*pi^3 - 8.*A(3).*A(6).*D^2.*L^2.*pi^3 - 8.*A(4).*A(5).*D^2.*L^2.*pi^3))./(16.*D^2.*L^3) - ((B^2 .* pi^2 .* (2.*A(4).*D^2.*L^4.*R - 4.*A(4).*D^2.*L^4.*pi^2 - 4.*A(4).*D^4.*L^2.*pi^2 + 8.*A(2).*A(7).*D^2.*L^4.*pi^3 + A(2).*A(7).*D^4.*L^2.*pi^3 - A(3).*A(6).*D^2.*L^4.*pi^3 + A(3).*A(6).*D^4.*L^2.*pi^3 + 8.*A(4).*A(5).*D^2.*L^4.*pi^3))./16 - (A(4).*D^4.*L^4.*pi^4)./8)./sigma1;
f5 = @(A) (B^2 .* ((pi^5.*A(2)^2.*D^2.*L^4)./4 + (pi^5.*A(4)^2.*D^4.*L^2)./4 + (pi^5.*A(4)^2.*D^2.*L^4)./8) + (A(2)^2.*D^4.*L^4.*pi^5)./4 + (A(4)^2.*D^4.*L^4.*pi^5)./8)./sigma1 + (B .* ((A(3)^2.*D^4.*pi^5)/4 + (A(4)^2.*D^4.*pi^5)./8 + (8.*A(1).*L^4.*Ra)./9 + 8.*A(5).*L^4.*pi^4 - 2.*A(5).*L^4.*R.*pi^2 + (A(3)^2.*D^2.*L^2.*pi^5)./4 + (A(4)^2.*D^2.*L^2.*pi^5)./8))./sigma2;
f6 = @(A) (B^2 .* ((4.*A(2).*D^2.*L^4.*Ra)./9 + 2.*A(6).*D^2.*L^4.*pi^4 + (A(1).*A(2).*D^2.*L^4.*pi^5)./8 + (A(3).*A(4).*D^2.*L^4.*pi^5)./16 + (3.*A(3).*A(4).*D^4.*L^2.*pi^5)./16 - (A(6).*D^2.*L^4.*R.*pi^2)./4) + (A(6).*D^4.*L^4.*pi^4)./4)./sigma1 + (B .* (4.*A(2).*L^4.*Ra)./9 + 4.*A(6).*L^4.*pi^4 + (A(3).*A(4).*D^4.*pi^5)./4 - A(6).*L^4.*R.*pi^2 + (A(3).*A(4).*D^2.*L^2.*pi^5)./4)./sigma2;
f7 = @(A) (B .* ((4.*A(3).*L^4.*Ra)./9 + (A(7).*D^4.*pi^4)./4 + 4.*A(7).*L^4.*pi^4 - A(7).*L^4.*R.*pi^2 + 2.*A(7).*D^2.*L^2.*pi^4 + (A(1).*A(3).*D^2.*L^2.*pi^5)./8 + (A(2).*A(4).*D^2.*L^2.*pi^5)./16))./sigma2 + (B^2 .* ((3.*A(2).*A(4).*pi^5.*D^4.*L^2)./16 + (A(2).*A(4).*pi^5.*D^2.*L^4)./4) + (A(2).*A(4).*D^4.*L^4.*pi^5)./4)./sigma1;
F = @(A) [f1(A); f2(A); f3(A); f4(A); f5(A); f6(A); f7(A)];
A0 = [0.01 0 0 0 0.01 0 0];
A = fsolve(F, A0);
solutions(i, :) = A;
F(A)
end
A1_1_1 = solutions(:, 1);
A2_1_1 = solutions(:, 5);
Nu = xi - 1./2 - (pi^3 ./ Ra_values) .* A1_1_1 - (8 .* pi^3 ./ Ra_values) .* A2_1_1;
%Nu(i) = xi - 1./2 - (pi^3 ./ Ra_values(i)) .* A(1) - (8 * pi^3 ./ Ra_values(i)) .* A(5);
%end
plot(Ra_values, Nu);
xlabel('Ra');
ylabel('Nu');

回答(1 个)

Aquatris
Aquatris 2024-6-24
编辑:Aquatris 2024-6-24
Since zeros(7,1) is kind of a solution for you, you should select your initial value away from that point. Below you can find a simple adjustment to your code that shows some of the nonzero solutions. If you want to find nonzero solutions for all Ra_values, then you should implement a simple algorithm that changes the initial values for specific Ra until a nonzero solution is found
D = 0.1;
L = 0.1;
B = 0.1;
xi = 0.1;
sigma1 = B^3 .* D^2 .* L^3;
sigma2 = D^2 .* L^3;
Ra_values = (10:100:100000).';
solutions = zeros(length(Ra_values), 7);
%Nu = zeros(length(Ra_values),1);
options = optimoptions('fsolve','Display','none');
for i = 1:length(Ra_values)
Ra = Ra_values(i);
R = Ra * xi;
f1 = @(A) -((5.*A(2).*A(6).*pi^5.*B^2.*D^2.*L^4)./8 + (A(2).*A(6).*pi^5.*D^4.*L^4)./4)./sigma1 - (B .* ((A(3).*A(7).*D^4.*pi^5)/4 - (A(1).*L^4.*pi^4)./2 - (32.*A(5).*L^4.*Ra)./9 + (A(1).*L^4.*R.*pi^2)./2 + (5.*A(3).*A(7).*D^2.*L^2.*pi^5)./8))./sigma2;
f2 = @(A) -(B^2 .* (A(2).*A(5).*D^2.*L^4.*pi^5 - (A(2).*D^2.*L^4.*pi^4)./2 - (A(1).*A(6).*D^2.*L^4.*pi^5)./8 - (4.*A(6).*D^2.*L^4.*Ra)./9 + (A(4).*A(7).*D^2.*L^4.*pi^5)./2 + (3.*A(4).*A(7).*D^4.*L^2.*pi^5)./16 + (A(2).*D^2.*L^4.*R.*pi^2)./4) - (A(2).*D^4.*L^4.*pi^4)./4)./sigma1 - (B .* ((A(4).*A(7).*D^4.*pi^5)./8 - (A(2).*L^4.*pi^4)./4 - (16.*A(6).*L^4.*Ra)./9 + (A(2).*L^4.*R.*pi^2)./4 + (5.*A(4).*A(7).*D^2.*L^2.*pi^5)./16))./sigma2;
f3 = @(A) (B .* ((16.*A(7).*L^4.*Ra)./9 + (A(3).*D^4.*pi^4)./4 + (A(3).*L^4.*pi^4)./4 - (A(3).*L^4.*R.*pi^2)./4 + (A(3).*D^2.*L^2.*pi^4)./2 + (A(1).*A(7).*D^2.*L^2.*pi^5)./8 - A(3).*A(5).*D^2.*L^2.*pi^5 - (A(4).*A(6).*D^2.*L^2.*pi^5)./2))./sigma2 - (B^2 .* ((3.*A(4).*A(6).*pi^5.*D^4.*L^2)./16 + (5.*A(4).*A(6).*pi^5.*D^2.*L^4)./16) + (A(4).*A(6).*D^4.*L^4.*pi^5)./8)./sigma1;
f4 = @(A) (B .* pi^2 .* (2.*A(4).*D^4.*pi^2 - 2.*A(4).*L^4.*R + 2.*A(4).*L^4.*pi^2 + 4.*A(4).*D^2.*L^2.*pi^2 + A(2).*A(7).*D^2.*L^2.*pi^3 - 8.*A(3).*A(6).*D^2.*L^2.*pi^3 - 8.*A(4).*A(5).*D^2.*L^2.*pi^3))./(16.*D^2.*L^3) - ((B^2 .* pi^2 .* (2.*A(4).*D^2.*L^4.*R - 4.*A(4).*D^2.*L^4.*pi^2 - 4.*A(4).*D^4.*L^2.*pi^2 + 8.*A(2).*A(7).*D^2.*L^4.*pi^3 + A(2).*A(7).*D^4.*L^2.*pi^3 - A(3).*A(6).*D^2.*L^4.*pi^3 + A(3).*A(6).*D^4.*L^2.*pi^3 + 8.*A(4).*A(5).*D^2.*L^4.*pi^3))./16 - (A(4).*D^4.*L^4.*pi^4)./8)./sigma1;
f5 = @(A) (B^2 .* ((pi^5.*A(2)^2.*D^2.*L^4)./4 + (pi^5.*A(4)^2.*D^4.*L^2)./4 + (pi^5.*A(4)^2.*D^2.*L^4)./8) + (A(2)^2.*D^4.*L^4.*pi^5)./4 + (A(4)^2.*D^4.*L^4.*pi^5)./8)./sigma1 + (B .* ((A(3)^2.*D^4.*pi^5)/4 + (A(4)^2.*D^4.*pi^5)./8 + (8.*A(1).*L^4.*Ra)./9 + 8.*A(5).*L^4.*pi^4 - 2.*A(5).*L^4.*R.*pi^2 + (A(3)^2.*D^2.*L^2.*pi^5)./4 + (A(4)^2.*D^2.*L^2.*pi^5)./8))./sigma2;
f6 = @(A) (B^2 .* ((4.*A(2).*D^2.*L^4.*Ra)./9 + 2.*A(6).*D^2.*L^4.*pi^4 + (A(1).*A(2).*D^2.*L^4.*pi^5)./8 + (A(3).*A(4).*D^2.*L^4.*pi^5)./16 + (3.*A(3).*A(4).*D^4.*L^2.*pi^5)./16 - (A(6).*D^2.*L^4.*R.*pi^2)./4) + (A(6).*D^4.*L^4.*pi^4)./4)./sigma1 + (B .* (4.*A(2).*L^4.*Ra)./9 + 4.*A(6).*L^4.*pi^4 + (A(3).*A(4).*D^4.*pi^5)./4 - A(6).*L^4.*R.*pi^2 + (A(3).*A(4).*D^2.*L^2.*pi^5)./4)./sigma2;
f7 = @(A) (B .* ((4.*A(3).*L^4.*Ra)./9 + (A(7).*D^4.*pi^4)./4 + 4.*A(7).*L^4.*pi^4 - A(7).*L^4.*R.*pi^2 + 2.*A(7).*D^2.*L^2.*pi^4 + (A(1).*A(3).*D^2.*L^2.*pi^5)./8 + (A(2).*A(4).*D^2.*L^2.*pi^5)./16))./sigma2 + (B^2 .* ((3.*A(2).*A(4).*pi^5.*D^4.*L^2)./16 + (A(2).*A(4).*pi^5.*D^2.*L^4)./4) + (A(2).*A(4).*D^4.*L^4.*pi^5)./4)./sigma1;
F = @(A) [f1(A); f2(A); f3(A); f4(A); f5(A); f6(A); f7(A)];
A0 = randn(7,1)*1e3;
A = fsolve(F, A0,options);
solutions(i, :) = A;
end
A1_1_1 = solutions(:, 1);
A2_1_1 = solutions(:, 5);
Nu = xi - 1./2 - (pi^3 ./ Ra_values) .* A1_1_1 - (8 .* pi^3 ./ Ra_values) .* A2_1_1;
nonzeroSolutions = solutions(all(abs(solutions)>1e-8,2),:)
nonzeroSolutions = 557x7
-11.1439 -2.4841 0.5966 -0.3815 0.1024 -0.1500 0.0153 -1.1769 1.1402 0.9476 -0.1999 -0.1267 0.0423 -0.1175 -161.9110 -3.7509 -0.9152 15.7362 3.5740 -39.5678 39.4107 -5.9693 -4.2321 0.1918 0.0064 -0.0264 -0.8981 -0.0094 -6.0161 0.2271 -0.9818 -4.0342 -0.5380 1.5874 -1.7717 -7.1687 5.3215 2.1127 -0.2700 -0.7532 0.3789 -0.1887 -10.5027 -7.6824 -1.8260 -0.1935 -1.0856 -0.5672 0.1584 -11.6710 -8.5242 1.4140 0.1407 -1.1966 -0.6349 -0.1218 -11.7617 0.0084 10.3163 -0.0083 0.4097 -0.0118 2.9077 -12.3794 0.2234 10.8350 0.0211 0.2714 0.0482 2.8422
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
%Nu(i) = xi - 1./2 - (pi^3 ./ Ra_values(i)) .* A(1) - (8 * pi^3 ./ Ra_values(i)) .* A(5);
%end
plot(Ra_values, Nu);
xlabel('Ra');
ylabel('Nu');
  1 个评论
John D'Errico
John D'Errico 2024-6-24
编辑:John D'Errico 2024-6-24
+1 of course. I very much appreciate seeing posts like yours. Well reasoned, good explanations and in good depth. I hope we continue to see you posting for a long time on the forum.
I would only suggest an idea that when you start with a random point at each pass for subtly different values of the parameter Ra, especially since this is a nonlinear system, you may be finding totally different solutions. It may be better to use the previous solution as a start point for fsolve at the next value of Ra.

请先登录,再进行评论。

类别

Help CenterFile Exchange 中查找有关 Loops and Conditional Statements 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by