Solving non linear delay differential equations with dde23
4 次查看(过去 30 天)
显示 更早的评论
i'm working on a delay differential equation that looks like this: f(y,z,y',z')(t)=a(y,z)(t)+b(y,z)(t-tau) g(y,z,y',z')(t)=c(y,z)(t)+d(y,z)(t-tau) The problem is, in MATLAB, dde23 only solves DDE when the differential terms are isolated (y'=F(t,y,ydel,z,zdel) , z'=G(t,y,ydel,z,zdel)).
Do you know if there's a way to work around it (or perhaps another available tool)? I've tried ddnsd assuming a null delay for delayed differential term but it only accepts non zero delays). Also trying to isolate y' and z' has revealed useless. Thank you
0 个评论
采纳的回答
Torsten
2015-4-23
Just solve the system
f(y,z,y',z')(t)=a(y,z)(t)+b(y,z)(t-tau) g(y,z,y',z')(t)=c(y,z)(t)+d(y,z)(t-tau)
for y',z' (two nonlinear equations in the unknowns y' and z').
A possible tool is MATLAB's fsolve.
Best wishes
Torsten.
2 个评论
Torsten
2015-4-23
If
f(y,z,y',z')= y'^2+sin(z')
g(y,z,y',z')=log(y')+atan(z')
e.g., fsolve will numerically solve the system
y'^2+sin(z')=a(y,z)(t)+b(y,z)(t-tau)
log(y')+atan(z')=c(y,z)(t)+d(y,z)(t-tau)
for y',z' if you declare y' and z' as the unknowns (all other variables are given).
And this s exactly what is needed for dde23 to work.
Best wishes
Torsten.
更多回答(0 个)
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Delay Differential Equations 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!