F =
Hi BW,
Define PI and F
s = zpk('s');
PI = 1 + 2/s;
F = 6;
In the first case, the linerarizer computes the transfer function from the input arrow to the output arrow.
The forward path gain is -F*PI and the loop gain is also -F*PI. Using the standard transfer function formula we get
H = -F*PI/(1 - (-F*PI))
which is the result produced by the linearizer (keeping in mind that s in the numerator cancels with s in the denominator.
Fo the second case, the transfer function is from the input arrow to the output arrow, which is the result you expect:
H = feedback(PI,F) % better way to compute PI/(1 + F*PI)
and what the linearizer produces.
The correct way to get the closed loop transfer fucntion from r to y is the second approach.
Not sure why the second approach would require "ripping apart" the model. Just place the linear anlaysis points where they need to be, exactly as you did.
No, one can't obtain the TF from simulink in terms of unevaluated, or symbolic parameters. You can specify a grid of parameters and get a grid of linearizations. Search the doc for "Batch Linearize Model for Parameter Variations"