How I customize self attention layer for identifying wafer defects?
13 次查看(过去 30 天)
显示 更早的评论
how I used customize multi head self attention in the CNN network for detecting wafer defects ? please explain with example
0 个评论
采纳的回答
Shantanu Dixit
2024-7-15
Hi Sharith,
It is my understanding that you want to add and customize self-attention in the CNN network for detecting wafer defects.
You can define a CNN-based architecture and add a self-attention layer in the end using ‘selfAttentionLayer’. The function takes in two parameters, i.e, ‘NumHeads’ and ‘NumKeyChannels’ using which you can change the number of heads and the dimensions of key vector.
Below is a reference code for the model architecture:
layers = [
imageInputLayer([28 28 1], 'Name', 'input')
convolution2dLayer(3, 16, 'Padding', 'same', 'Name', 'conv1')
batchNormalizationLayer('Name', 'bn1')
reluLayer('Name', 'relu1')
maxPooling2dLayer(2, 'Stride', 2, 'Name', 'maxpool1')
convolution2dLayer(3, 32, 'Padding', 'same', 'Name', 'conv2')
batchNormalizationLayer('Name', 'bn2')
reluLayer('Name', 'relu2')
flattenLayer('Name', 'flatten')
selfAttentionLayer(4, 32, 'Name', 'self_attention')
fullyConnectedLayer(10, 'Name', 'fc')
softmaxLayer('Name', 'softmax')
classificationLayer('Name', 'output')
];
The above code defines a CNN based architecture incorporating Multi headed self-attention (MHSA) for ten class classification.
Refer to the below MathWorks documentation for more information:
更多回答(0 个)
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Image Data Workflows 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!